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ABSTRACT 

Medical imaging is a powerful tool for clinical practice allowing in-vivo insight into a patient’s 

disease state. Many modalities exist, allowing for the collection of diverse information about the 

underlying tissue structure and/or function. Traditionally, medical professionals use visual assessment of 

scans to search for disease, assess relevant disease predictors and propose clinical intervention steps. 

However, the imaging data contain potentially useful information beyond visual assessment by trained 

professional. To better use the full depth of information contained in the image sets, quantitative imaging 

characteristics (QICs), can be extracted using mathematical and statistical operations on regions or 

volumes of interests. The process of using QICs is a pipeline typically involving image acquisition, 

segmentation, feature extraction, set qualification and analysis of informatics.  These descriptors can be 

integrated into classification methods focused on differentiating between disease states. Lung cancer, a 

leading cause of death worldwide, is a clear application for advanced in-vivo imaging based classification 

methods.  

We hypothesize that QICs extracted from spatially-linked and size-standardized regions of 

surrounding lung tissue can improve risk assessment quality over features extracted from only the lung 

tumor, or nodule, regions. We require a robust and flexible pipeline for the extraction and selection of 

disease QICs in computed tomography (CT). This includes creating an optimized method for feature 

extraction, reduction, selection, and predictive analysis which could be applied to a multitude of disease 

imaging problems. This thesis expanded a developmental pipeline for machine learning using a large 

multicenter controlled CT dataset of lung nodules to extract CT QICs from the nodule, surrounding 

parenchyma, and greater lung volume and explore CT feature interconnectivity. Furthermore, it created a 

validated pipeline that is more computationally and time efficient and with stability of performance. The 

modularity of the optimized pipeline facilitates broader application of the tool for applications beyond CT 

identified pulmonary nodules.  

We have developed a flexible and robust pipeline for the extraction and selection of Quantitative 

Imaging Characteristics for Risk Assessment from the Tumor and its Environment (QIC-RATE). The 

results presented in this thesis support our hypothesis, showing that classification of lung and breast 

tumors is improved through inclusion of peritumoral signal. Optimal performance in the lung application 

achieved with the QIC-RATE tool incorporating 75% of the nodule diameter equivalent in perinodular 

parenchyma with a development performance of 100% accuracy. The stability of performance was 

reflected in the maintained high accuracy (98%) in the independent validation dataset of 100 CT from a 

separate institution. In the breast QIC-RATE application, optimal performance was achieved using 25% 

of the tumor diameter in breast tissue with 90% accuracy in development, 82% in validation. We address 
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the need for more complex assessments of medically imaged tumors through the QIC-RATE pipeline; a 

modular, scalable, transferrable pipeline for extracting, reducing and selecting, and training a 

classification tool based on QICs. Altogether, this research has resulted in a risk assessment methodology 

that is validated, stable, high performing, adaptable, and transparent. 
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PUBLIC ABSTRACT 

Cancer is one of the leading causes of death worldwide. Medical imaging of tumors is an 

important step in the detection and diagnosis of cancer. In the lung, imaging has become a powerful tool 

in detecting small tumors; even still, not all detected tumors are cancerous and invasive procedures to 

obtain diagnostic truth carry risks. Therefore, medical professionals are often faced with the challenging 

task of assigning risk to a subject based primarily on the appearance of the tumor on imaging along with 

the subject’s previous history of clinical risk-factors (age, smoking, etc.). Imaging data contains 

potentially useful information beyond that which is visually perceived by trained medical professionals, 

when image data is analyzed using computer algorithms.  Here we develop a pipeline method using 

artificial intelligence (AI) to assign cancer risk scores that can be used by radiologists to better understand 

cancer risk in patients with tumors. We hypothesize that the tumor and the tissue surrounding the tumor 

have characteristics that differ between cancer and non-cancer tumors. Informative features are 

automatically calculated from the image of the tumor. We developed a method to intelligently select from 

all available features, those most important characteristics for distinguishing cancer from non-cancer 

cases. These selected features are used to teach an AI program to assign a cancer risk score to the 

subject’s tumor. We have applied this pipeline to tumors in the lung and the breast, showing high 

performance in the AI program that incorporates features from the surrounding tissue. Furthermore, this 

method requires little human interaction to be applied which is ideal for use in clinics.  
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CHAPTER 1:  INTRODUCTION 

Medical imaging is a powerful tool for clinical practice allowing in-vivo insight into a patient’s 

disease state. Many modalities exist including computed tomography (CT), mammography, magnetic 

resonance (MR), and positron emission tomography (PET). Each of these systems provides a different 

image rendering of tissue characteristics using unique methods of data acquisition and image construction 

allowing the collection of diverse information about the underlying tissue structure and/or function. 

Traditionally, medical professionals use visual assessment of scans to search for disease, to assess 

relevant disease predictors, and to propose clinical intervention steps. However, these data contain 

potentially useful information beyond visual assessment by trained professional. To better use the full 

depth of information contained in the image sets, quantitative imaging characteristics (QICs), can be 

extracted using mathematical and statistical operations on regions or volumes of interests. 

QICs have become an area of exponential growth in research during the last thirty years1,2. The 

process of using QICs is a pipeline typically involving image acquisition, segmentation, feature 

extraction, set qualification and analysis of informatics.  These descriptors can be integrated into 

classification methods focused on differentiating between disease states. This pipeline can be applied to a 

multitude of medical imaging problems including disease risk assessment, progression probability, and 

prediction of survival3. Cancer, a leading cause of death worldwide, is a clear application for advanced in-

vivo imaging based classification methods. This dissertation focuses on the most deadly cancer – lung 

cancer4.  

Lung cancer nodules are histologically heterogeneous, containing a complex intermixing of 

cancerous cells, with regions of inflammation, fibrosis, and necrosis. Pathology-driven investigations of 

the surrounding perinodular parenchyma has demonstrated the difference in cellular infiltration between 

lung cancer and benign processes as well as the increased parenchyma distention from larger nodules5,6. 

Medical imaging presents the ability to non-invasively capture whole-tumor characteristics and 

quantitative CT (qCT) metrics are a way of measuring tumor heterogeneity7-9. Prior published research 

demonstrates  that qCT shape and texture features extracted from CT representation of suspicious 

pulmonary nodules can aid in the classification of malignant versus benign and previously our group has 

indicated the predictive potential of including the immediately surrounding lung tissue, or parenchyma, in 

the analysis of solid pulmonary nodules10-25.  

We require a robust and flexible pipeline for the extraction and selection of disease characteristics in 

medical imaging data. This includes creating an optimized method for feature extraction, reduction, 

selection, and predictive analysis which could be applied to a multitude of disease imaging problems. 

This thesis seeks to expand a developmental pipeline for machine learning using a large multicenter 
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controlled CT dataset of lung nodules to extract qCT QICs from the nodule, surrounding parenchyma, and 

greater lung volume and explore qCT feature interconnectivity. Furthermore, it seeks to create a validated 

pipeline that is more computationally and time efficient and with stability of performance. We 

hypothesize that QICs extracted from spatially-linked and size-standardized regions of surrounding lung 

tissue can improve risk assessment quality over features extracted from only the lung nodule regions. 

Furthermore, we believe the resultant approach has predictive value (and stability) for applications 

beyond CT identified pulmonary nodules.  

This dissertation will begin with acknowledgement of the datasets used (Chapter 2: Datasets) 

followed by an assessment of classification models previously developed using human-provided variables 

for lung nodule risk prediction (Chapter 3: Mathematical Prediction Models). This will be followed by 

a study of the necessary image segmentation to systematically create VOIs (Chapter 4: Segmentation). 

We describe the development of a radiomics-based pipeline for transparent feature set identification and 

classifier training using Quantitative Imaging Characteristics for Risk Assessment from the Tumor and its 

Environment (QIC-RATE) for distinction between malignant and benign lung nodules (Chapter 5: QIC-

RATE). We then demonstrate the applicability of the QIC-RATE pipeline to other disease distinctions 

(Chapter 6: Application of QIC-RATE to Histoplasmosis Classification, Chapter 8: Application of 

QIC-RATE to Breast Tumor Classification) and additional feature extraction techniques (Chapter 7: 

Application of QIC-RATE to Global Lung Measures). 
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CHAPTER 2: DATASETS 

This dissertation focuses on x-ray-based imaging, specifically computed tomography (CT) of the 

lungs. CT is the standard imaging modality for pulmonary disease assessment due to its (1) fast 

acquisition incurring less motion artifact from cardiac and breathing rhythms, (2) volumetric high-

resolution CT acquisition, and (3) high inherent contrast of lung tissue and structures. In the National 

Lung Screening Trial (NLST), low-dose CT (LDCT) was shown to reduce lung cancer mortality by 20% 

over chest radiograph26. Lung imaging using CT is recommended for the screening of individuals with a 

high-risk of lung cancer27-33, the follow-up on tumors discovered during screening27-33, and the typical 

recommended follow-up method for incidentally discovered nodules in clinic31,34.   

The applications developed in this dissertation have applicability to other tumor imaging, as a 

demonstration we have made appropriate modifications to apply the same technique to breast cancer 

mammography. Mammography has been the standard imaging modality for breast screening for due to its 

(1) fast acquisition, (2) low radiation exposure (~30 kVp), and (3) relatively low-cost option. The Breast 

Imaging Reporting And Data System (BI-RADS) was developed for a standard method of reading and 

reporting abnormal findings on breast mammography exams35.  

 This chapter details the CT and mammography datasets used in this dissertation document. Here, 

we explain the original purpose(s) for collection of the origin datasets and eligibility and/or inclusion 

criteria. For all datasets, diagnostic truth determination method for malignancy was confirmed with 

histopathology via needle biopsy or surgical resection; for benign cases, truth was determined by 

histopathology from surgical resection or by imaging from resolution or stability for greater than two 

years. Table 2.1 contains a summary of key demographic and clinical from each dataset. In each of the 

subsequent chapters, the numbers and relevant demographical/scanning information is included for the 

portion of the cohorts used. 

2.1. Clinical Datasets 

Establishing a retrospective clinical cohort has the advantage of access to an extensive amount of 

demographic, clinical, and diagnostic information. The limitation of this dataset, being retrospectively 

collected, is substantial heterogeneity in the CT acquisition parameters. The main source of variation in 

protocol is due to incidental lung nodule discovery. In these cases, the key clinical indicator requiring the 

order for thoracic imaging (i.e. respiratory symptoms, cardiac, trauma/emergency, referral to oncology 

from external physician, etc.) affects the type of CT protocol parameters applied for acquisition. 

Additionally, as CT scanners are updated, parameters such as reconstruction kernel type, image resolution 

(x-, y-, z-plane), and noise properties related to advanced hardware can impact image quality36.  
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Table 2.1: Overview summary of available data that is used in this thesis. 

 UIHC Multicenter Studies Publicly Available Dataset 
 Clinical COPDGene INHALE NLST LungX LIDC FDA DDSM 

Diagnosis 
199 

190M:90B 

269 
30M:239B 

100 
50M:50B 

14 
6M:8B 

80 
38M:42B 

12 
12M:0B 

NA 
1115 

568M:547B 
Segmentation 199 NA NA NA NA 12 7 1115 

Apollo  NA 213 100 14 NA NA NA NA 

Age (years) 60±12 62±13 63±11 65±12 61±13 64±10 NA 52±7 

Sex 111X:88Y 164X:105Y 66X:34Y 7X:7Y 42X:38Y 4X:8Y NA 1115X:0Y 

Pack-years 25.8±25 25.2±24 31.8±27 42.1±15 NA NA NA NA 

Reader 

Analysis 
YES YES YES YES NA YES NA YES 

Kilovoltage 

Mean, Range 
118 kVp, 
80-140 kVp 

120 kVp, 
120-120 kVp 

120 kVp, 
120-120 kVp 

120 kVp, 
120-120 kVp 

122 kVp, 
120-140kVp 

120 kVp, 
100-140 kVp 

120 kVp, 
120-120 kVp  

NA 

Current 

Mean, Range 
413 mAs, 
36-795 mAs 

263 mAs, 
160-392 mAs 

251 mAs, 
160-386 mAs 

65 mAs, 
40-80 mAs 

410 mAs 
240-500 mAs  

413 mAs, 
152-425 mAs 

200 mAs, 
200-200 mAs  

NA 

Slice 

Thickness 

Mean, Range 

3.30 mm, 
1.0-6.0 mm 

0.65 mm, 
0.6-0.9 mm 

0.70 mm, 
0.6-0.8 mm 

0.75 mm, 
0.6-1.3 mm 

1.0 mm, 
1.0-1.0 mm 

2.5mm, 
1.5-3.0 mm 

0.75mm, 
0.75-0.75mm 

NA 

Definition of abbreviations: UIHC – University of Iowa Hospitals and Clinics; COPDGene – Genetics and Epidemiology 

of Chronic Obstructive Pulmonary Disease Study; INHALE – The Genetics Epidemiology of Lung Cancer Study; NLST 

– National Lung Screening Trial; LungX – International Society for Optics and Photonics LungX Challenge; LIDC – 

Lung Imaging Database Consortium; FDA – Food and Drug Administration Lungman Phantom; DDSM – Digital 

Database of Screening Mammography; M – malignant; B – benign; NA – not available/acquired; Apollo – analysis 

performed using Vida Apollo software; X – female sex; Y – male sex 

The University of Iowa Hospitals and Clinics (UIHC) utilizes an electronic medical record 

system (Epic Systems, Verona, WI) for the collection and storage of patient data. With institutional 

review board (IRB) approval, the radiology reports of chest CT scans from 2008-2014 were text searched 

for the terms ‘pulmonary nodule’ or ‘lung nodule’ to identify potential subjects. The medical records of 

these potential subjects were further manually mined for eligibility inclusion. This dataset was previously 

reported upon in Dilger, 201637. Subsets of the clinical dataset collected were used in Chapter 3: 

Mathematical Prediction Models, Chapter 4: Segmentation, and Chapter 6: Application of QIC-

RATE to Histoplasmosis Classification as described below.  

2.1.1. Longitudinal Cohort 

In current clinical practice, nodules are often imaged more than once prior to diagnosis, as a proof 

of concept study, we identified a subset of clinical subjects which were imaged multiple times (2-6) prior 

to diagnosis of the nodule. A cohort of 30 subjects with a total of 92 clinical CT scans were used to assess 

the improvement of published post-imaging mathematical prediction models longitudinally described in 

Chapter 3: Mathematical Prediction Models.  

2.1.2. Segmentation Cohort 

Automated and semi-automated tools to improve the analysis workflow are of great need, 

particularly as they reduce the amount of required human interaction – thereby potentially reducing time, 
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effort, and subjectivity. It is likely that heterogeneous scanning parameters affect these automated tools in 

a manner that do not affect human readers. Due to the wide acquisition parameters and clinical scan 

representation of this dataset, we utilized a subset of four clinical cases for the development and testing of 

the semi-automated segmentation tools described in Chapter 4: Segmentation.  

2.1.3. Histoplasmosis – NSCLC Cohort 

Histoplasmosis is a fungal infection that is endemic to the Ohio River Valley area which often 

presents in imaging as a solitary pulmonary nodule resulting in a clinical diagnostic issue38. This presents 

a difficult clinical challenge, with many cases of histoplasmosis undergoing invasive procedures for 

nodule diagnosis. With this dataset, we utilized a case-control matched cohort of 71 clinical 

histoplasmosis controls and non-small cell lung cancer cases collected at the University of Iowa to assess 

the developed approach’s robustness to difficult, potentially heterogenous data and compare the 

performance to observers as described in Chapter 6: Application of QIC-RATE to Histoplasmosis. 

2.2. Multicenter Study Datasets 

Large multicenter studies have exploited the benefits of CT applied to the lungs to investigate 

aims including the mortality reduction of early detected lung cancer39 and characterization of chronic 

obstructive pulmonary disease (COPD)40-42. These prospective trials have standardized CT acquisition 

protocol to support the ability to extract high-quality, reproducible quantitative measures41,42. While 

pulmonary nodule detection was not the primary goal of some of these multicenter studies, the large 

populations of current and former smokers, enrolled in these multicenter trials made ‘incidental’ 

pulmonary nodule discovery a likely event for a subset of subjects. With proper database management, 

the pulmonary nodules discovered during research study imaging were tracked and, with subject consent, 

the clinical follow-up of a nodule were recorded. For this dissertation, we have exploited pulmonary 

nodule data collection from three of these studies to procure a high-resolution research cohort with 

pulmonary nodules. The following sections detail the purpose of the origin of each dataset and indicate 

the eligibility for diagnostic truth for inclusion in our dataset. Sample slice images from these datasets are 

shown in Figure 2.1. 

2.2.1. National Lung Screening Trial 

The NLST was a multicenter study to compare lung screening with LDCT and chest radiography 

in a subpopulation of individuals with a high risk of lung cancer39. Each NLST participant underwent a 

baseline and two annual screenings (total of three imaging time-points) using either LDCT or chest 

radiography. As the NLST’s target endpoint was the detection of lung cancer, diagnostic follow-up 

tracking of detected pulmonary nodules was part of the study design. 
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The UIHC was one of the centers performing LDCT screening for the NSLT. As the raw CT data 

was available to be reconstructed at a smaller slice thickness, some of these subjects with histopathology 

proven diagnosis were included in our high-resolution research cohort. We performed visual confirmation 

of lobar location of histopathology diagnosed pulmonary nodule with follow-up information from NLST. 

Subjects from the NLST were included in the following chapters: Chapter 3: Mathematical Prediction 

Models, Chapter 4: Segmentation, and Chapter 5: QIC-RATE.  

 

Figure 2.1: Sample slices from six malignant and six benign cases taken from the multicenter study datasets. Image 

screenshots produced in MatLab. Red arrows indicate nodule location. 

2.2.2. Genetics and Epidemiology of Chronic Obstructive Pulmonary Disease 

The Genetics and Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) Study 

was a multicenter trial investigating the genetic and environmental exposures for COPD40. This study 

recruited subjects with various COPD Gold Stage (based on pulmonary function testing) including normal 

healthy subjects without COPD. Follow-up of imaging-identified lung nodules was not the primary aim of 

the COPDGene study; however, through ancillary funding, COPDGene began collecting nodule 

diagnostic information. We performed visual confirmation of lobar locations of histopathology diagnosed 

pulmonary nodules and evaluated follow-up scans for imaging-derived benign diagnosis of nodule 

resolution/stability. Subjects from the COPDGene study were included in the following chapters: 
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Chapter 3: Mathematical Prediction Models, Chapter 4: Segmentation, Chapter 5: QIC-RATE, and 

Chapter 7: Application of QIC-RATE to Global Lung Measures.  

2.2.3. The Genetic Epidemiology of Lung Cancer Study 

The Genetic Epidemiology of Lung Cancer (INHALE) study sought to evaluate the role of genes 

and the environment in the etiology of lung cancer, particularly with respect to racial susceptibility in the 

link between lung cancer and COPD41. Tracking nodule outcome (diagnosis, treatment etc.) was an 

integral part of the parent study. Subjects underwent non-contrast chest LDCT scans at both full 

inspiration and full expiration under a standardized protocol. Through a collaboration with Dr. Ann 

Schwartz, we have included a subset of subjects with confirmed diagnosis whose CT scans, 

demographics, and clinician information was collected. Subjects from the INHALE Study were included 

in the following chapters: Chapter 3: Mathematical Prediction Models, Chapter 4: Segmentation, 

Chapter 5: QIC-RATE, and Chapter 7: Application of QIC-RATE to Global Lung Measures. 

2.3. Publicly Available Datasets 

The datasets described in the previous two sections were acquired either through UIHC or 

through scientific collaborations at other institutions. Recently, efforts in the imaging community have 

been made to compile large, public datasets for researchers to have resources to build and to test methods 

of image processing and image machine learning. There has also been a greater emphasis on data 

transparency and sharing which has prompted the creation of centralized sources for finding publicly 

available imaging datasets. One which emphasizes imaging data collected of tumors is The Cancer 

Imaging Archive (TCIA) (http://www.cancerimagingarchive.net/)43. The dataset curation for these 

collections can be diverse and include information such as clinical factors, treatment factors, genetic 

factors, image segmentations, and follow-up data. In this dissertation, portions of several of these 

collections from TCIA were used to supplement questions/tests and validate pipeline.  

2.3.1. Lung Imaging Database Consortium  

The Lung Imaging Database Consortium (LIDC) is a collection of CT images that have been 

assessed by four radiologists44,45. This dataset was retrospectively collected from seven institutions and 

includes 1018 thoracic CT scans with/without lung nodules. As these were collected from clinical 

conditions, it included heterogeneous scanning parameters. Each scan was read by four radiologists who, 

if a they encountered a nodule ≥ 3mm in maximum in-plane diameter, used a computer interface to 

segment the nodule. They were also prompted to provide an assumed malignancy risk score (1, low-risk, 

to 5, high-risk). This data does not include histopathological diagnosis on the majority of nodules. Here, 

we have used the LIDC-IDRI in Chapter 4: Segmentation to assess the developed nodule segmentation 

tools.  

http://www.cancerimagingarchive.net/
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2.3.2. Lungman Phantom for Segmentation  

The Quantitative Imaging Biomarker Alliance (QIBA) challenge used a phantom with multiple 

nodules aimed at determining the repeatability of segmentation techniques and establishing standards for 

acceptable deviation among tools46. CT data was collected using the Food and Drug Administration 

Lungman phantom and consisted of repeated scans of the Lungman phantom with various layouts of 

synthetic nodules performed on a common scanner. For this dissertation document, we utilized the QIBA 

challenge dataset to further confirm segmentation results in Chapter 4: Segmentation.  

2.3.3. International Society for Optics and Photonics LungX Challenge 

The International Society for Optics and Photonics LungX Challenge was implemented in 2015 

to compare performance of radiomic risk scores from participants using a common cohort of nodules47,48. 

It includes 72 diagnosed nodules retrospectively collected from the University of Chicago with IRB 

approval. All scans had been acquired on a common scanner model with consistent reconstruction 

parameters. Diagnostic assessment was confirmed through either pathology (malignant, benign) or 

imaging (benign). The LungX Challenge data was included in Chapter 5: QIC-RATE.  

2.3.4. Curated Breast Imaging Subset of the Digital Database for Screening Mammography 

The Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-

DDSM) is a collection of breast mammography screening exams that was publicly released with 

histopathology proven diagnosis of either ‘malignant’ or ‘benign’49. The CBIS-DDSM contains 2,620 

scans with identified masses (tumors) and calcifications. For this dissertation, only a subset of scans 

identified by solid tumor masses were included for analysis. This dataset was used in Chapter 8: 

Application of QIC-RATE to Breast Tumor Classification to assess the transferability to other 

imaging dimensionalities and disease locations and to provide a more data-corrected comparison to other 

approaches.  
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CHAPTER 3: MATEHMATICAL PREDICTION MODELS 

This chapter is adapted from “Post-Test Pulmonary Nodule Mathematical Prediction Models: Are They 

Clinically Relevant?” accepted for publication in European Radiology50.  

3.1. Significance and Background 

Lung cancer is the leading cause of cancer-related deaths in the United States4. CT imaging is 

used to detect and to characterize lung nodules. Size-based guidelines exist to provide clinicians with 

criteria to assess the potential malignancy of pulmonary nodules including the Lung-RADs Assessment 

Categories, American College of Chest Physicians Clinical Practice Guidelines, and Fleischner Society 

Follow-Up Guidelines33,51,52. However, based on size alone, these have the potential to misclassify both 

small malignant nodules and large benign nodules leading to suboptimal treatment plans53-55. This is 

particularly true of first encounters, or ‘de novo’ nodules, which often fall into CT surveillance 

recommendations without access to growth information.  

Pre-imaging lung cancer risk models have been produced which seek to stratify the individual’s 

benefit from screening thereby reducing unnecessary radiation exposure on subjects with limited benefit 

from CT imaging56. To better characterize imaging-detected nodules, post-imaging mathematical 

prediction models (MPMs) have been developed using multivariate logistic regression models of known 

lung cancer risk factors such as family history, demographics, and radiologist-defined imaging 

characteristics to provide a malignancy risk stratification after an imaging encounter57-61. Previously, 

MPMs have been utilized on an ad-hoc basis by clinicians seeking standardized input from evidence-

based models. However, recently, an MPM was incorporated into the British Thoracic Society’s (BTS) 

Guidelines for Nodule Follow-up following an initial size-based stratification of risk (grade C 

recommendation) indicating a growing interest in the increased use of MPMs for day-to-day management 

of pulmonary nodule subjects62.  

This chapter compares four previously published post-imaging MPMs: the Mayo Clinic model 

(MC)57, the U.S. Department of Veterans Affairs model (VA)58, the Peking University model (PU)60, and 

the Brock University model (BU)59, on a large cohort of trial subjects and a longitudinal cohort of 

retrospective clinical subjects. As these MPMs were developed using different imaging parameters 

(clinical chest radiographs57,60, clinical CT scans58,60, or lung cancer screening CT scans59), different 

proportions of malignant cases (MC: 35%; VA: 54%; PU: 61%; BU 6%), and variable size distributions 

(mean size malignant/benign; MC: 17.8mm/11.6mm; VA: 18.9mm/14.8mm; PU: 21.3mm/17.2mm; BU: 

15.7mm/4.1mm), we expect significant cohort dependence to be seen when each MPM was applied to an 

independent dataset.  
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While several studies have attempted to compare the accuracy of various post-imaging MPMs, they have 

reported performance (sensitivity, specificity) based on optimized threshold points for their unique study 

cohorts as opposed to the recommended thresholds associated with a given MPM63-65. These studies 

reported that independent cohort-optimized thresholds can vary greatly from the MPM thresholds and 

adjustments to the cut-off used affects sensitivity and specificity values65. This presents a lack of clarity in 

the appropriate cut-off point for a given MPM to be applied in the clinical context66. Here, we evaluate 

the current clinical usefulness of MPMs using the recommended thresholds and compare the performance 

to our study-optimized cut-offs.  

3.2. Materials and Methods 

3.2.1. Study Cohorts 

As mentioned, the MPMs investigated here have been built and tested in diverse datasets 

including lung screening and incidental clinical cases. For this study, two cohorts of subjects with 

pulmonary nodules were investigated: a research cohort and a longitudinal clinical cohort. (Table 3.1).  

3.2.1.1. Research Trial Cohort 

The research cohort consisted of 317 subjects (80 malignant, 237 benign) included from two 

separate trials collecting high-resolution CT scans (217 COPDGene40, 100 INHALE41). While neither 

study was specifically aligned with the recommendations for screening for lung cancer, both had de-novo 

nodules encountered during the course of imaging. Demographic and historical information was collected 

from participants in these trials and radiologist reports were generated to include descriptions of nodule 

findings. Further information about these studies is included in Chapter 2. 

3.2.1.2. Longitudinal Clinical Cohort 

The longitudinal clinical cohort was included in this study as a proof of concept on MPM stability 

over time and repeated imaging. The cohort consisted of 30 subjects (16 malignant, 14 benign) with 92 

clinical CT scans retrospectively collected from the University of Iowa Hospitals and Clinics (Table 3.1). 

Further information regarding the origin of the clinical data is included in Chapter 2. For this assessment, 

we compared the performance of the MPM predictions at (a) the initial (incidental) imaging encounter on 

which the pulmonary nodule was identified (TP_I), (b) the final imaging encounter before diagnosis 

(TP_F), and (c) across all the imaging encounters between detection and diagnosis.  
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Table 3.1: Subject and nodule demographics of study cohorts. 

Cohort Demographics Malignant Benign 

Research 

Number of Subjects 80 237 

Age (years) 

(Mean, Range) 

64.0 

(41-87) 

62.1 

(40-86) 

Sex 54F : 26M 113F : 124M 

Pack-years 

(Mean, Range) 

40.7 

(0-80) 

15.8 

(0-50) 

Nodule Size 

(Mean, Range) 

16.3mm 

(4-30mm) 

9.2mm 

(4-30mm) 

LDCT screening eligible * 

(Yes: No) 
48:32 85:152 

Lung-RADs 

category 

2 5 59 

3 6 56 

4A 27 92 

4B 42 30 

Longitudinal 

Clinical 

Subjects 16 14 

Age (years) 

(Mean, Range) 

46.5. 

(23-64) 

61.1 

(40-74) 

Sex 9F : 7M 10F : 4M 

Pack-years 

(Mean, Range) 

21.2 

(0-50) 

14.2 

(0-25) 

Nodule Size 

(Mean, Range) 

18.9mm 

(3-48mm) 

13.3mm 

(3-29mm) 

Definition of abbreviations: F = female, M = male, LDCT = low-dose computed tomography; * : LDCT screening 

eligibility criteria based on age between 55 and 80, and smoking pack-years ≥ 30 pack 

3.2.2. Mathematical Prediction Models 

Four MPMs were assessed (MC57, VA58, PU60, BU59); detailed descriptions of the MPM-specific 

equations and variable descriptions is provided in the Appendix B.1. Pertinent risk variables were 

manually extracted from subject records and a risk score from each MPM was calculated for each subject 

(Table 3.2). Unless the radiological report specifically indicated the presence of calcification, spiculation, 

or the absence of a border, nodules were considered non-calcified, non-spiculated, and smooth-bordered. 

3.2.3. Statistical Analysis 

Detailed information on the specific performance measures is included in the Appendix A. In 

brief, MPM raw prediction performance was assessed using area-under-the-curve of the receiver-operator 

characteristic (AUC-ROC) (Delong) and precision recall (AUC-PR) techniques. The Youden’s J statistic 

was used as the calibrated threshold to produce sensitivity and specificity. The stability of the Youden 

thresholds was assessed using median absolute deviation (MAD) below 0.05 on sub-set sizes between 50 

and 250 subjects using 41,000 naïve bootstrapping trials sampling without replacement; for additional 

details, refer to Appendix B.2. McNemar’s tests was used for statistical difference between binary 
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classifications (inter-MPM and intra-MPM). For MPM-recommended thresholds, we assessed the 

performance by recommendation-induced misclassification of nodule or delay in ground-truth diagnosis. 

MPM-recommended categories were binarized into benign-tagged (‘low-risk’ or ‘watchful waiting’ and 

malignant-tagged (‘high-risk’ or recommended immediate additional work-up).  

Table 3.2: Tabular form of mathematical prediction model’s (MPMs) base equations. Risk variables are categorized into 

demographical (subject reported) and radiological (clinician reported) factors. 

Risk variable Units 
MPM Coefficient 

MC VA PU BU 

Demographical 

Age Years 0.0391 0.0779 0.07 0.0287 

Sex F/M    0.6011 

Ever Smoker Y/N 0.7917 2.061   

Time of smoking cessation Years  0.0567   

Cancer history Y/N 1.3388    

Family history of cancer Y/N   1.267  

Family history of lung cancer Y/N    0.2961 

Radiological 

Emphysema Y/N    0.2953 

Upper lobe Y/N 0.7838   0.6581 

Diameter
a
 MM 0.1274 0.112 0.0676 -5.3854* 

Spiculation Y/N 1.0407  0.736 0.7729 

Smooth Border Y/N   -1.408  

Calcification Y/N   -1.615  

Nodule type 

Solid : Y/N       0 

Part Solid: Y/N       0.377 

Non-Solid: Y/N       -0.1276 

Nodule count Count    -0.0824 

Base Intercept/Offset -6.872 -8.404 -4.496 0.2761 

Note: Units are coded in clinical terms; for use in the equation(s), sex (F=1,M=0) and presence (Y=1,N=0) are numerically 

coded. To obtain a prediction value for a given MPM, multiply each coefficient by the subject’s risk variable value and take the 

summation with the base intercept/offset. The resulting number is the x in the logistic equation: e^x/((1 + e^x)) = risk prediction. 

For example, performing the VA MPM prediction for a 62-year-old, never-smoker, with a 10mm nodule would yield x = 

(62*0.0779 + 0*2.061 + 0*0.0567 + 10*0.112 - 8.404) = -2.454; risk prediction from the logistic equation would yield, 0.079. 

Definition of abbreviations: MPM – mathematical prediction model; MC – Mayo Clinic; VA – Veteran’s Affairs; BU – 

Brock University; PU – Peking University; F – Female; M – Male; Y – Presence; N – Absence; *: In the BU model, nodule 

size is defined by (diameter in millimeters/10 )^-0.5 

 

3.2.4. Development of Application to Calibrate and Assess Local Datasets  

 Prior literature has noted the need for calibration on individual MPMs, but no easy tool exists for 

clinicians to both (a) determine which MPM is suitable for their population and (b) calibrate the MPM to 

their local population57. Some of these MPMs have an online calculator tool that can provide the risk 

assessment from the original calibration on a single patient67-69. However, these tools do not provide easy 

means for calibration on a large cohort.  
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As part of this study, we developed an open-source web-based application capable of performing 

cohort calibration and performance analysis measures discussed in this chapter. The application can be 

used to guide researchers and clinicians through the process of (1) creating a local dataset, (2) calibrating 

the MPMs to the local dataset, and (3) determining which of the four MPMs is the best fit for their 

population. The app was developed using R and the Shiny library for web-based application development. 

R is an open source programming language and software environment, originally developed for statistical 

computing and graphics, which has a wide range of contributed packages, similar to libraries, expanding 

functionality of the base code. Shiny is an R package which was developed to make it easy to build 

interactive web applications over existing R code70,71.  

3.3. Results  

3.3.1. Calibrated Thresholds Equalize Performance Among MPMs  

 The four models (MC, VA, PU, BU) were applied to the research cohort (N = 317, 80 malignant, 

237 benign) yielding four risk scores (one per MPM) per subject which were compared with the nodule’s 

known diagnosis (Figure 3.1, solid line). The impact of risk stratification based on the calibrated 

threshold (Table 3.3, Table 3.5) and MPM-associated categories (Table 3.6) were applied to the 

predictions (Figure 3.1, solid line). The optimal AUC-cutoff (Figure 3.1, dashed line) was derived for 

each of the models. The MC (AUC: 0.63) and BU (AUC: 0.61) MPMs achieved the best separation 

between classes on this cohort compared to PU (AUC: 0.55) and VA (AUC: 0.51) MPMs. The MC and 

BU MPMs were both statistically significantly better than the VA MPM (p = 0.02); all other pairwise 

comparisons of significance yielded p-values above the assigned alpha (0.05). No MPM significantly 

outperformed all others, revealing relative similarity in their calibrated discriminatory capability between 

malignant and benign nodules.  

Table 3.3: Performance measures using cohort-derived optimized thresholds using Youden’s J Statistic (Figure 1, dashed 

lines). 

  Nodule Size MC VA PU BU BU-BTS 

AUC-ROC 

ALL 0.80 0.74 0.75 0.81 0.78 

<6mm 0.67 0.69 0.58 0.64 NA 

≥6mm to < 8mm 0.48 0.52 0.60 0.56 NA 

≥ 8mm to < 15mm 0.74 0.66 0.70 0.72 0.72 

≥ 15mm 0.69 0.57 0.66 0.69 0.69 

AUC-PR 

ALL 0.63 0.51 0.61 0.55 0.66 

<6mm 0.13 0.11 0.33 0.11 NA 

≥6mm to < 8mm 0.11 0.16 0.11 0.14 NA 

≥ 8mm to < 15mm 0.40 0.31 0.39 0.47 0.47 

≥ 15mm 0.79 0.68 0.75 0.75 0.75 

Definition of abbreviations: AUC-ROC area-under-curve of receiver-operator characteristic; AUC-PR – area-under-

curve of precision-recall; MC – Mayo Clinic; VA – Veteran’s Affairs; PU – Peking University; BU – Brock University; 

BTS – British Thoracic Society 



14 

 
Figure 3.1: Histograms of MPM predictions split based on true nodule classification. Solid lines indicate MPM-derived 

thresholds with MPM-assigned categories of watchful-waiting (W), biopsy (B), surgery (S), low-risk (L), or high-risk (H). 

The dashed line indicates 

3.3.2. Youden Threshold Stability and Application development  

A naïve bootstrapping without replacement method using 10,000 combinations was performed on 

the research cohort using set sizes between N = 50 and N = 250 by increments of 5 subjects. The median 

absolute deviation (MAD) in Youden threshold was calculated for each set size, N. MAD is robust to 

outliers and provides an unsigned (absolute) measure of deviation of the set size’s Youden threshold 

which is blinded to the full cohort’s Youden threshold. Youden threshold stability was determined when 

the set MAD was below 0.05 (Figure A.1). The set median Youden threshold was also compared to the 

Youden threshold of the full cohort (N = 317) (Figure 3.2). Viewed together, this demonstrates the 

stability, blinded to the full cohort, of the Youden and that the stability converges on the full cohort’s 

Youden. Testing the Youden threshold stability (MAD < 0.05) at different calibration set sizes 

demonstrated stability at 100 subjects for three MPMS (MC, BU, PU) and stability at 145 subjects for all 

four MPMs, thus establishing a recommended clinical calibration dataset size. For additional details refer 

to Appendix B.2. 
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Figure 3.2: Youden threshold stability compared to calibration set size. A) Stability was considered met at a level of 0.05 

in median absolute deviation from trial median Youden. B) Convergence of trial median Youden (dashed lines) to full 

cohort Youden (solid lines). 

The developed app is hosted at https://www.i-clic.uihc.uiowa.edu/resources/sieren/mpm/) and the 

origin code is freely available through GitHub (https://github.uiowa.edu/APPIL/MPM) under the Creative 

Commons license Attribution-Share-Alike. Figure 3.3 shows a flowchart of how the application can be 

used to perform local population calibration. In brief, the user simply requires a spreadsheet containing 

the relevant demographic and imaging variables for a representative sample of their patient population. 

Calibration is then performed using the statistical tests described previously, with the ability to provide 

thresholds that are customizable to desired level of sensitivity and specificity.  

3.3.3. Calibrated Thresholds Out-perform the Original Recommended Thresholds in Work-up 

Categorization 

Using the MPM-associated categories, up to 25% of the malignant tumors would have been 

assigned low-risk, while 25.3% to 97.5% of benign tumors would have been recommended for further 

work-up. The BU MPM was the only model to have agreement between the Youden-optimized calibrated 

threshold (0.10) and the MPM-associated guidelines (0.10) for the full cohort; however, in nodules ≥ 

15mm the Youden optimized threshold was much higher (0.32). Furthermore, McNemar’s comparison 

between the optimal and recommended thresholds demonstrated significant difference between the 

classification accuracy of three of the MPMs (MC, VA, PU) with p <0.001, indicating that calibration to 

the local dataset improves discriminative prowess over original MPM-associated risk categorizations. As 

the BU Youden optimal threshold was nearly identical to the recommended, there was no statistical 

significance p=0.99, this stability indicates the BU MPM-associated thresholds were already well 

calibrated for this cohort.  

https://www.i-clic.uihc.uiowa.edu/resources/sieren/mpm/
https://github.uiowa.edu/APPIL/MPM
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Figure 3.3: Flowchart of developed application to determine which MPM and calibration threshold to use for a local 

population. Definition of abbreviations; MPM – mathematical prediction model 

 

3.3.4. Comparison to Fleischner Size-based Clinical Management Recommendations 

The Fleischner Guidelines for Management of Incidental Pulmonary Nodules Detected on CT 

indicates that solid pulmonary nodules have a differential follow-up using three size-based thresholds 

(<6mm; 6-8mm; >8mm)51. To compare the Fleischner to the calibrated MPMs, the size-threshold of 

≥8mm was used for ‘high-risk’ prediction and <8mm for ‘low-risk’ prediction. Table 3.4 shows the 

breakdown for these categories and the clinical consequences of the follow-up recommendations. 

McNemar’s analysis demonstrated that the Youden calibrated predictions for all four MPMs was 

statistically superior (p < 0.01) than the Fleischner designations.  
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Table 3.4: Distribution and potential clinical issues of Fleischner Follow-up Guidelines on the Research Cohort. 

Category Malignant Clinical issue Benign Clinical issue 

< 6mm 5 

5 malignant wait 

indefinite amount of time 

(No routine follow-up) 

59 
No clinical issue since no 

follow-up 

≥ 6mm to < 8mm 6 
6 malignant wait 6-12 

months 
56 

56 benign have extra CT in 6-12 

months (increased radiation) 

≥ 8mm 69 
69 malignant wait 3 

months, PET or Biopsy 
122 

122 benign have extra CT in 3 

months 

3.3.5. Calibrated Thresholds Improve Specificity in Nodules ≥8mm  

Size is a common variable among the MPMs and is prominent in current management guidelines. 

An accurate MPM risk assessment would be most clinically interesting and powerful on the nodules 

≥8mm to <15mm at baseline with 5-15% probability of malignancy in Lung-RADS – in this study, 119 

nodules (27 malignant, 92 benign). The best compromising MPM at this size category was the PU model, 

which using MPM-associated thresholds achieved 97% sensitivity but only 36% specificity; applying 

Youden optimal threshold achieved 67% sensitivity and improved specificity to 61% (Tables 3.5-6). 

Using the MPM-associated threshold, VA model would have only missed one malignant nodule, but at 

the cost of 79 benign nodules undergoing biopsy (75 cases) or surgery (4 cases); the optimized threshold 

improved VA MPM specificity for the nodules between 8-15mm to 82%. The MC model was the only 

MPM to completely reduce wait-time on malignant tumors sending 26 to biopsy and 1 to surgery; 

however, all benign tumors would have also been assigned to biopsy (91 cases) or surgery (1 case); here, 

applying optimized thresholds significantly improves specificity to 70% with sensitivity of 70%. In 

considering nodules between 8 and 15 mm in diameter, the MPM-associated recommendation thresholds 

for work-up have little benefit in tradeoff between sensitivity and specificity. Applying optimized 

thresholds improves specificity at the cost of some sensitivity.  

3.3.6. Size-Exclusion Prior to MPM in BTS Guidelines Appropriate 

The BU model is unique as it has been incorporated into the BTS guidelines for management of 

nodules; per BTS decision flowchart, only nodules ≥ 8mm are to be assessed with the BU MPM31. Table 

3.3 demonstrates the BU accuracy for that size-based subset. On our cohort, following the BTS exclusion 

of nodules < 8mm in diameter would have meant 11 malignant and 115 benign nodules would not be 

assessed with the BU due to size-exclusion. Applying the BU to the size-excluded, no malignant and 9 

benign nodules are labeled ‘high risk’ by the BU MPM. Of the 11 malignant size-excluded nodules, one 

is recommended to be ‘discharged’, four are recommended for a 1-year follow-up CT, and six are 

recommended for a 3-month CT -indicating the need for more sophisticated discrimination techniques 

geared towards small nodules. The BTS recommendation to not include BU prediction on small nodules 

is appropriate, and as the BU threshold did not change with calibration, the recommended decision of 

10% risk (0.1 prediction value) is well founded.  
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Table 3.5: MPM optimized categories size-breakdown of nodule risk prediction using Youden threshold. 

MPM Size Malignancy probability and associated recommendation 

MC 

  
< 21%  

Low Risk 

≥ 21%  

High Risk 

All 
19M: 180B 61M: 57B 

24% malignant wait 24% benign immediate work-up 

<6mm 
5M:59B 0M:0B 

100% malignant wait 0% benign extra procedures 

≥6mm to < 8mm 
5M:51B 1M:5B 

83% malignant wait 9% benign extra procedures 

≥ 8mm to < 15mm 
8M: 67B 19M: 25B 

30% malignant wait 30% benign immediate work-up 

≥ 15mm 
2M: 2B 40M: 28B 

5% malignant wait 93% benign immediate work-up 

VA 

  
< 50%  

Low Risk 

≥ 50%  

High Risk 

All 
34M: 197B 46M: 40B 

43% malignant wait 17% benign immediate work-up 

<6mm 
5M:59B 0M:1B 

100% malignant wait 2% benign extra procedures 

≥6mm to < 8mm 
6M:56B 0M:0B 

100% malignant wait 0% benign extra procedures 

≥ 8mm to < 15mm 
16M: 75B 11M: 17B 

59% malignant wait 18% benign immediate work-up 

≥ 15mm 
7M: 8B 35M: 22B 

17% malignant wait 73% benign immediate work-up 

BU 

  
< 10%  

Low Risk 

≥ 10%  

High Risk 

All 
19M: 178B 61M: 59B 

24% malignant wait 25% benign extra procedures 

<6mm 
5M:59B 0M:0B 

100% malignant wait 0% benign extra procedures 

≥6mm to < 8mm 
6M:55B 0M:1B 

100% malignant wait 2% benign extra procedures 

≥ 8mm to < 15mm 
9M: 61B 18M: 31B 

33% malignant wait 34% benign immediate work-up 

≥ 15mm 
0M: 1B 42M: 29B 

0% malignant wait 97% benign immediate work-up 

PU 

  
< 70% 

Low Risk 

≥ 70% 

High Risk 

All 
18M: 154B 62M: 83B 

22% malignant wait 35% benign immediate work-up 

<6mm 
3M:54B 2M:5B 

60% malignant wait 9% benign extra procedures 

≥6mm to < 8mm 
3M:34B 3M:22B 

50% malignant wait 39% benign extra procedures 

≥ 8mm to < 15mm 
9M: 56B 18M: 36B 

33% malignant wait 39% benign immediate work-up 

≥ 15mm 
6M: 18B 36M: 12B 

14% malignant wait 39% benign immediate work-up 
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Table 3.6: MPM-assigned categories size-breakdown of nodule risk prediction using published thresholds. 

MPM Size Malignancy probability and associated recommendations 

MC 

  
<3% 

Watchful waiting 
3-68% 

Needle biopsy 
>68% 

Surgery 

All 
0M:6B 61M:224B 19M: 7B 

0% malignant wait 97.5% benign extra procedures 

<6mm 
0M:6B 5M:53B 0M:0B 

0% malignant wait 89.8% benign extra procedures 

≥6mm to < 8mm 
0M:0B 6M:56B 0M:0B 

0% malignant wait 100% benign extra procedures 

≥ 8mm to < 15mm 
0M:0B 26M:91B 1M:1B 

0% malignant wait 100% benign extra procedures 

≥ 15mm 
0M:0B 24M:24B 18M:6B 

0% malignant wait 100% benign extra procedures 

VA 

  
<20% 

Watchful waiting 
20-69% 

Needle biopsy 
>69%Surgery 

All 
7M : 58B 51M: 163B 22M: 16B 

8.8% malignant wait 75.5% benign extra procedures 

<6mm 
1M:29B 4M:30B 0M:0B 

20% malignant wait 50.9% benign extra procedures 

≥6mm to < 8mm 
2M:16B 4M:40B 0M:0B 

33% malignant wait 71.4% benign extra procedures 

≥ 8mm to < 15mm 
1M:13B 25M:75B 1M:4B 

3.7% malignant wait 85.9% benign extra procedures 

≥ 15mm 
3M:0B 18M:18B 21M:12B 

7.1% malignant waits 100% benign extra procedures 

BU 

  
<10% 

Low risk 
>10% 

High risk 

All 
20M: 176B 60M:61B 

25.0% malignant wait 25.3% benign extra procedures 

<6mm 
5M:59B 0M:0B 

100% malignant wait 0% benign extra procedures 

≥6mm to < 8mm 
6M:55B 0M:1B 

100% malignant wait 1.8% benign extra procedures 

≥ 8mm to < 15mm 
9M:61B 18M:31B 

33.3% malignant wait 33.7% benign extra procedures 

≥ 15mm 
0M:1B 42M:29B 

0% malignant wait 96.7% benign extra procedures 

PU 

  
<46.3% 

Nodule considered benign 

>46.3% 
Nodule considered malignant 

All 
8M: 87B 72M:150B 

10% malignant wait 63.3% benign extra procedures 

<6mm 
2M:28B 3M:31B 

40% malignant wait 52.5% benign extra procedures 

≥6mm to < 8mm 
0M:22B 6M:34B 

0% malignant wait 60.7% benign extra procedures 

≥ 8mm to < 15mm 
3M:33B 24M:59B 

7.1% malignant wait 64.1% benign extra procedures 

≥ 15mm 
3M:4B 39M:26B 

7.1% malignant wait 86.7% benign extra procedures 
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3.3.7. Limited Benefit in MPM Tracking Longitudinally 

 We investigated the improvement in MPM performance over repeated imaging time-point on a 

clinical, longitudinal dataset of nodules imaged up to 6 times (average 3.1±1.1) prior to diagnosis (Figure 

3.4). The average number of days between sequential patient imaging encounters was 214 days (±338 

days) with malignant nodules tending to have a slightly longer time between scans (218 days ±368) 

compared to benign nodules (197 days±305).  

The VA model was the only MPM to also decrease the percentage of benign nodules at TP_F that 

were categorized as high risk. The TP_I AUCs (MC: 0.62-0.96; VA: 0.65-0.96; BU: 0.51-0.90; PU: 0.70-

0.98) were consistently higher than the TP_F AUCs in three of the MPMs (MC: 0.56-0.94; VA: 0.34-

0.78; BU: 0.53-0.92; PU: 0.44-0.88). McNemar’s p-value between TP_I and TP_F showed no statistical 

significance between MPM predictions at TP_I and TP_F (MC: 0.76, VA: 0.08, BU: 0.91, PU: 0.18), 

indicating no improvement to MPM risk assessment closer to diagnosis. This data suggests that MPM risk 

should not be incorporated into longitudinal evaluation of detected pulmonary nodules.  

 

Figure 3.4: MPM prediction value over CT number on longitudinal cohort. The range in prediction values for malignant 

(red) and benign (blue) are shown with minimum and maximum values indicated by dashed colored lines. The average 

prediction value for the two classes is shown with the solid colored lines. Black dashed lines indicate Youden thresholds. 

Definition of abbreviations: MC – Mayo Clinic; VA – Veteran’s Affairs; PU – Peking University; BU – Brock University; 

MPM – mathematical prediction model; CT – computed tomography 
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3.4. Discussion 

We have applied four post-imaging MPMs to a large cohort of trial subjects and to a longitudinal 

cohort of clinical subjects. To our knowledge, this is the first study to compare MPMs by both the MPM-

associated categories and AUC-derived (calibrated) classifications and to observe of MPM stability over 

longitudinal scans.  

Recent alignment of size-based recommendations indicates that nodules ≥ 8mm in maximum 

diameter are at a heightened risk of malignancy33,51,62. Hammer et al. investigated eight risk calculators on 

a cohort of 86 nodules (59 malignant), showing a consistent under-estimation of malignancy risk. Here, 

we have a smaller proportion (25%) of malignancies in our cohort, yet our results concur with the 

assessment that care needs to be taken when assessing larger nodules (≥8mm) with these MPMs 63. The 

applied BU model on the ≥8mm sub-cohort also demonstrated an under-estimation of true malignancy 

risk with an over-estimation of risk on benign nodules. Given average nodule size in the MPM 

development cohorts was larger than 8mm, it would be likely that the development-cohorts size bias 

would lead to more large benign nodules being tagged as suspicious. 

Chung et al. recently validated the BU model on two large clinical cohorts showing that while the 

full model achieved AUCs of 0.901-0.911, the AUC-derived optimal threshold was 1.8-4% lower than the 

recommended BTS guidelines; this is a difference of 4-9% in sensitivity72. However, that study contained 

a significant size-bias between benign and malignant cases. While nodule diameter is not a variable in the 

BU model, the BTS flow-diagram applies the BU model only to nodules ≥8mm diameter (≥300mm3 

volume). Here we have applied the BU model in the manner recommended by BTS and demonstrated 

than all 11 below the size-stratified malignant nodules had a BU less than the threshold 10%. In practice, 

these malignant tumors would have remained untreated for at least 3 months before additional imaging.  

While the BTS closely followed the original BU model study for this risk threshold, many 

independent surveys of MPMs have relied solely on the threshold derived from their cohort’s AUC-ROC 

optimum63-65. Here we have displayed both the AUC-derived threshold from our cohort as well as the 

MPM-derived thresholds. When using our cohort-derived optimal cutoff point, MPM specificity was 

higher (65.0-83.0%) than through using the MPM-derived assigned categories (2.5%-74.7%), but MPM 

sensitivity was lower (58.0-78%) compared to MPM assigned categories (75.0%-100%). Based on MPM 

assigned categories, only the MC model would have detected 100% of malignancies at the imaging time 

point, but this is at the cost of requiring biopsy/surgery for all benign nodules. It is important to note that 

some studies have reported high AUCs of MPMs in their independent cohorts, but these studies have 

looked solely at the AUC-derived thresholds to assess MPM performance64,66. 

Our study has several limitations. First, the mean nodule size of the cohorts was smaller than 

those used to develop the MPMs. As nodule size was a common variable among the MC, VA, and PU 
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MPMs, this could have affected the prediction results. Second, the MPMs investigated here use subject-

provided demographic/historical information and radiologist-described image characteristics, both of 

which can suffer from subjective variability and completeness. Radiologist variability is more easily 

investigated and has been shown to be different between radiologists as well as within a radiologist on so-

called “coffee-break” reads in which a period of time is placed between repeated analysis73,74. While to a 

certain extent, the variability is built into the risk models in the development dataset, the modeling of 

noisy data is likely different between the development cohort and the user-end radiologist. Maiga et al. 

compared the MC model with clinician assigned risk from qualitative statements of cancer risk, showing 

that the current trend of qualitative risk statements for malignancy are highly variable and recommend a 

standardized scale for clinicians to follow75. Recent advances in CT including dose reduction techniques 

and reconstruction algorithms, have the potential to affect signal-to-noise ratio within the scan, thereby a 

potential source of variation that could affect both radiologist/reader efficiency and consistency. We do 

believe some of this variation is already contained within the development of the MPMs given the diverse 

(often clinical) datasets on which they were developed. Interesting to this point, the Mayo Clinic model 

(chest radiographs) performs on par with the Brock University model (low dose CT). Our cohort included 

only solid nodules, further studies are required to determine if MPM performance is affected when used 

on cohort of sub-solid tumors. Our research cohort consisted of 25.2% malignant cases and longitudinal 

clinical cohort 53.3% malignant cases; the MPMs compared here were developed on cohorts of subjects 

with difference malignancy rates (MC: 35%; VA: 54%; BU 6%; PU: 61%). We have included the AUC-

PR measure to further describe the discrimination ability of MPMs in cohorts with disproportionate 

numbers of malignant and benign cases.  

With the move towards digitized healthcare reporting and standardization of care, computer-

based risk models have a natural place in the decision pipeline. There is a benefit to adding fully-

automated, non-subjective systems with high performance to supplement radiologist reads with additional 

risk assessments. Efforts to develop tools which do not incur user subjectivity have been previously 

described; Mehta et al. compared the MC MPM with three multi-variate models developed with 

volumetric features extracted from semi-automatic (single click) segmentation of the nodule65. Machine 

learning for the assessment of lung cancer risk have been further developed to reduce extraction 

variability10,13,15,21,22,25,76.  

The number of lung nodules detected is set to increase with broad implementation of lung cancer 

screening programs . To make the screening and detection power of CT efficient and safe in practice, 

there is a great need for better informed decision making. Given proper assessment and application, post-

imaging risk models have the potential to improve decision making processes. While standardization and 

wide-spread usage of these automated techniques has yet to happen, MPMs are being utilized in clinics 
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today. This paper has demonstrated the need for clarification in malignancy thresholds reported and 

demonstrated the cohort dependence built into these MPMs. We thereby recommend if an MPM is to be 

utilized for newly detected pulmonary nodules, that it is first calibrated with a retrospectively collected 

dataset (≥100 subjects) from the utilizing institution to ensure a locally optimal threshold value. We have 

developed an easy to use web-based application to assist institutions in performing MPM calibration and 

comparison of performance metrics between models. The application allows MPM discriminative power 

to be assessed using either AUC-ROC (balanced cohort) or AUC-PR (unbalanced cohort) measures and 

provides sensitivity and specificity. The lack of improvement in risk prediction from these MPMs over 

time suggests caution in the utility of these tools during surveillance stage of clinical management.  

We have demonstrated that while MPM risk predictions are relatively stable across imaging time-

points, there is a lack of evidence to their utility on an independent cohort without first performing cohort 

calibration. Based on our results, it is paramount that in the discussion and analysis of MPMs that the 

clinical applicability is thoroughly vetted by using the MPM-derived recommendations rather than the 

cohort-derived Youden thresholds as significant variations in performance ensue. Furthermore, we 

assessed this relevance to Lung-RADs associated ‘indeterminate’ or ‘suspicious’ nodules (between 8mm 

and 15mm in diameter), finding while MPM determination of malignancies in this category is improved 

over smaller nodules there is a stark increase in the number of recommended invasive procedures on 

benign tumors. 

We have demonstrated the predictive capabilities of post-imaging MPMs developed with subject 

provided demographic/historical information and radiologist described imaging features. While predictive 

performance can be improved through calibration of the MPMs onto a locally representative dataset, there 

is still only moderate predictive capabilities, mostly centered around the size of the nodule. A weakness of 

these MPMS is the reliance on human provided features which can be sensitive to memory/extraneous 

circumstances (familial history knowledge) and reader subjectivity/variability; it also requires additional 

time to implement as human-described features need to be manually entered into the system. There is a 

need for additional predictive accuracy without need for additional human effort, which lends nicely into 

the use of automatically extracted quantitative imaging characteristics which can be supplied to machine 

learning algorithms to provide additional risk assessment. Chapter 5: QIC-RATE describes the method 

we developed for generating a risk assessment from these features. However, before these features can be 

automatically extracted from the imaging datasets, relevant regions/volumes of interest need to be 

identified to ensure feature relevance, the following Chapter 4: Segmentation details the assessment of 

semi-automated segmentation tools to streamline this process.  
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CHAPTER 4: SEGMENTATION 

This chapter focuses on the segmentation results and discussion, methodology is explained in depth in 

Appendix C.  

4.1. Introduction 

The previous chapter demonstrated the potential utility of mathematical risk assessment tools for 

clinicians to make informed decisions regarding a patient’s work-up. We concluded that while MPMs can 

be more clinically useful after calibration to a local cohort, improvement to the discriminatory ability in 

needed. Once source of limitation of MPMs come from the use of radiologists-described features which 

can be subjective and variable within and between readers. Also, patient-provided historical information 

which can be limited by knowledge (family history) and memory (smoking history with multiple 

cessation attempts). A method of risk assessment utilizing objective measures could provide greater 

performance and stability with little added human effort. One such method is automatic imaging feature 

extraction followed by machine learning for classification or clustering, these methods will be explored in 

Chapter 5: QIC-RATE.  

Pre-processing for feature extraction requires image segmentation, which partitions the image 

into regions of interest (ROI). Manual volumetric segmentations by expert users are time consuming to 

generate and user subjectivity can influence both inter- and intra-observer agreement. Many algorithms 

for volumetric nodule segmentation have been developed and reported in the literature, from commercial, 

proprietary systems to research-driven academic tools; however, these segmentation methods are not 

widely available to researchers46,77-79. In a recent study from the Quantitative Imaging Network, of which 

we were a collaborating center, it was systematically shown that segmentation method can lead to 

differences in subsequent extraction of imaging features, including nodule volume80. This promotes the 

need for increased standardization in segmentations for quantitative analysis of disease. In this study, we 

compared the performance of easily built segmentation pipelines in easily accessible image-processing 

environments on a common test cohort. We explored if improvements in performance could be attained 

by developing an in-house graph-cuts based segmentation method. Our recommendations regarding lung 

nodule semi-automated segmentation approaches are based on the performance in the following areas: 

segmentation error, segmentation repeatability, ease of use, and customization.  

4.2. Methods 

4.2.1. Study Cohorts 

This study included two cohorts of nodules aimed at assessing [1- Tool Flexibility] ability for 

segmentation method to be flexible to different protocols and parameters and [2 – Variability Accuracy] 
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testing segmentation method on nodules segmented by four radiologists. Table 4.1 indicates 

demographical and scanning parameter ranges.  

Table 4.1: Demographic and scanning parameters for segmentation tool comparison. 
 

24 Malignant 12 Benign 
Age Mean 55 ± 7 years. 61± 10 years. 
Sex (Female: Male) 10:14 8:4 
Kilovoltage Range, 

Mean 

80-140 kVp, 
120 kVp 

80-140 kVp, 
115 kVp 

Current Range,  

Mean 
40-500 mA, 
410 mA 

40-600 mA, 
410 mA 

Slice Thickness Range, 

Mean 
0.6-5.0mm, 
2.75mm 

0.6-5.0mm, 
3.0mm 

Nodule Size Range, 

Mean 
6-29 mm, 
15.5mm 

8-24 mm, 
16.2mm 

4.2.1.1. Tool Flexibility Cohort 

This dataset incorporated different diagnoses with 12 malignant and 12 benign confirmed with 

histopathology. Segmentation difficulty was determined by presence of extra-nodular attachments and 

irregular border or non-spherical shape (12 challenging, 12 fair). The overall demographics and scanning 

parameters of the subjects were diverse. Within this cohort, eight CT scans came from multi-center trials 

(4 NLST, 4 COPDGene) and 16 were retrospective clinical cases from the University of Iowa Hospitals 

and Clinics 26,40.  

4.2.1.2. Variability Accuracy Cohort 

To compare the tools against a ‘more complete truth’ the cohort included 12 scans from the LIDC 

with consensus tracings from four blinded radiologists’ manual tracings used as the truth 45. Solitary 

pulmonary nodules (<30mm in listed equivalent diameter), with confirmed primary lung cancer, DICOM 

CT data available with four radiologist annotation segmentations resulted in 24 cases, from which 12 

were randomly selected. Annotations were extracted for each of the radiologists and a “consensus” 

tracing was generated using the Agreement Analysis Toolbox (Lampert, MatLab)81. The calculated 

agreement method used in this study was the level-set maximizing likelihood, LSML, maximizing the 

posteriori probability. These twelve scans were also used to assess the relative variability in segmentation 

compared to four experts.  

4.2.2. Manual Segmentation Process 

The main objective of a segmentation process is to produce a ROI; in this study, we explore the 

creation of a nodule ROI. An appropriate segmentation of the nodule often requires the removal of invalid 
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regions, such as vessels, chest wall, and pleural elements. As nodules can be directly interacting with an 

adjacent structure, segmentation requires careful consideration of object boundaries.  

Using the Apollo software (Vida Diagnostics, Coralville, IA) the nodule was identified, and a 

ROI was selected including the nodule and a one-nodule-diameter radius of the surrounding lung (Figure 

4.1). The bounding box coordinates of the ROI was recorded, so it could be replicated for the semi-

automated assessment methods. Manual segmentation of these masks was performed using an in-house 

software developed in MatLab (Mathworks, Natick, MA)11. The manually generated masks included that 

of nodule (primary) and a secondary valid tissue mask. Valid tissue consisted of the nodule and 

surrounding parenchyma and excluded the chest wall, airways, and vessels interacting with the nodule or 

the parenchyma. The parenchyma masks (secondary) were calculated by subtraction of the nodule mask 

from the valid tissue mask. 

 

Figure 4.1: Sample ROI images with nodule location indicated by arrow. 

4.2.3. Semi-automated Segmentation Tools 

Five semi-automated segmentation methods were investigated and compared for accuracy, 

repeatability, and reproducibility. Functions from four image processing environments (FIJI-ImageJ 

(FIJI)82, MeVisLab (MVL)83, ITK-Snap (ITK-S)84, Mukhopadhyay-MatLab (ML)85) were assembled into 

pipelines for semi-automated segmentations. One additional segmentation tool was developed in-house, 

Graph-cuts (GC). For each tool, a segmentation protocol was developed to ensure consistent use. Full 

descriptions of the pipelines are found in Appendix C.1. The segmentation method selected in this study 

was used in calculating the size-standardized parenchymal signal inclusion amount in the perinodular 

rings (inclusive) and band (exclusive). Further details on how these parenchyma masks were calculated is 

detailed in the Appendix C.2. 

4.2.4. Analysis of Performance 

Segmentation quality was assessed using well-established measures: sensitivity, specificity, 

Jaccard Distance (JD), Volumetric Error Rate (VER), and standardized Hausdroff Distance (SHD). The 
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results of these measures were linearly combined to create error and repeatability criteria. The equations 

for these measures and criteria are given in the Appendix C.3. The segmentation tools were evaluated 

using a weighted score of six criteria: the nodule segmentation and repeatability along with the user-

grades for ease-of-use and ability to customize the tool. The Segmentation Error (40%) was calculated 

using a combination of the measures of similarity for each nodule. This measure was then ranked among 

the five tools such that each tool had 24 rankings, one for each nodule. The average of these rankings was 

taken as the criteria score. The Repeatability (20%) was calculated using the variances of the measures of 

similarity for each nodule in the same manner of Segmentation Error. Ease of use (15%) and 

Customization (25%) were user-indicated ratings based on interaction requirements, graphical user 

interface and intuitiveness, and post-segmentation processing abilities. A non-exclusive score of one to 

ten was given by each user, this score averaged and then multiplied by the weight factor (15% for Ease of 

use and 25% for Customization).  

4.3. Results 

4.3.1. Comparison of segmentation quality across tools 

For each tool, two independent non-radiologist users of varying lung nodule segmentation 

experience implemented the segmentation pipeline five times for each of the nodules. Comparison of the 

three segmentation quality measurements (JD, VE, and SHD) was performed and summarized in Figure 

4.2. The ML and GC were the highest performing tools, with similar values on the performance metrics; 

for ML and GC respectively the mean and standard deviation were; JD = 0.13±0.09, 0.15±0.07, VE = 

0.06±.07, 0.05±0.09, SHD = 0.28±0.17, 0.28±0.19. FIJI achieved mid-range performance with regards to 

JD (0.24±0.17) and SHD (0.43±0.17) and was the only tool to consistently underestimate nodule volume 

(VE = -0.09±0.08). MVL also achieved sub-optimal performance in the three tested measures and had 

large variations in the JD and VE measures with lower variations in SHD shown by the standard 

deviations (JD = 0.09, VE = 0.21, and SHD = 0.08). Segmentations from ITK-S had the most edge-pixel 

difference of the segmentation tools coupled with a low nodule VE (0.1±0.17) of these masks, the errors 

tended to occur at edges that often visually represent vessels or pleural attachments. The trends across 

tools were consistent between nodule segmentations.  

4.3.2. Results from criteria and scoring  

The five tools were evaluated for segmentation error and repeatability as well as tool ease of use 

and customization using weighted scoring criteria (Table 4.2). The final score out of 100% indicates the 

tool’s effectiveness and usability. The ease of use and customization are where FIJI, MVL, and ITK-S 

where sharply separated. FIJI received the lowest ease of use score of 6 as it required more than 20 user 

clicks per case and required 6 separate tabs of the graphical user interface to be open which affected the 
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ability of the user to quickly assess the nodule and parenchyma. Similarly, MVL and ITK-S performed 

poorly on the post-run segmentation modifications. MVL received the lowest score as it had no internal 

capability to customize the segmentation after a run, requiring the user to modify the segmentation 

outside of the tool. ITK-Snap did have internal capabilities to edit the segmentation post-run, however 

these modifications were time consuming and required user adjustments of energy cost function 

parameters. Using the weighted criteria as a guide we further analyzed the ML and GC approaches, 

testing for differences between error using the tool and inter-radiologist manual segmentation.  

 

Figure 4.2: Segmentation results of three performance measures. A) Comparison between five semi-automated tools on 

full study cohort, B) Comparison of non-radiologists using ML to manual tracing of LIDC radiologists in the Variability 

Accuracy Cohort. Definition of abbreviations: FIJI – Fiji Is Just ImageJ; MVL – MeVisLab; ITK-S – ITK-Snap; ML - 

Mukhopadhyay-MatLab; GC – graph-cuts. 
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Table 4.2: Segmentation tool scoring and criteria. From cohort of 36 nodules, performance was calculated as the average 

of ten runs for each nodule. 

Criteria  FIJI MVL ITK-S ML GC Weight 

Segmentation Error 8 7 6 9 9 40% 

Repeatability 8 6 7 9 9 20% 

Ease of Use 6 8 9 10 10 15% 

Customization 10 3 5 10 9 25% 

Weighted Score 82% 60% 64% 94% 92% 100% 

Definition of abbreviations: FIJI – Fiji Is Just ImageJ; MVL – MeVisLab; ITK-S – ITK-Snap; ML - Mukhopadhyay-

MatLab; GC – graph-cuts. 

4.3.3. QIBA-Compliance Testing on Selected Tool 

The guidelines produced by QIBA were used in order to provide a more standardized measure of 

the performance of the top scoring tool. As reported in Athelogou et al, 15% was the acceptable level of 

uncertainty in volumetric error outlined in the QIBA protocol.46 The mean volumetric error for the 

segmentations of the 7 target tumors by ML tool was 3.54% (Table 4.3).  

 

Table 4.3: Volumetric error rates for the 7 target tumors of the Lungman phantom using the ML segmentation method. 

Shape Nodule Nominal 

Diameter 

Volumetric 

Error 

Spherical 1 10 mm 3.0% 

2 20 mm 4.2% 

3 40 mm 1.9% 

Ovoid 4 10 mm 2.3% 

5 20 mm 2.2% 

Lobulated 6 10 mm 6.2% 

7 20 mm 5.0% 

4.4. Discussion 

Studies using the LIDC’s manual tracings from four expert radiologists have repeatedly shown 

variability between and within users, and this is a recognized limitation of manual approaches 44. As non-

negligible inter- and intra-reader variability can occur, there is a limitation in the resulting accuracy of 

any segmentation system based on the user’s own subjective bias. Thereby, a tool achieving high 

accuracy compared to a single user’s segmentation is potentially less powerful than a tool achieving high 

repeatability. By leveraging error with repeatability and including manual segmentations from non-

radiologists and radiologists this study has attempted to lessen the directed bias that could result from 

focusing on a single user’s segmentation as the truth standard. Having the semi-automated tools run by 

users of varying experience allowed us to test for overall-usability. The more experienced user had 

previously produced segmentations in all the segmentation tools, while the least experienced user had no 

segmentation exposure prior to the study. 

It was the goal of this study to identify semi-automated approaches which could be used to create 

volumetric nodule segmentations in a more time efficient and less variable manner than manual editing, 
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aiming to strengthen the objective determination of longitudinal change. It is possible that to achieve the 

best accuracy of segmentation the nodule must first be categorized based on some criterion (shape, 

attachments, composition, etc.) and a different method of segmentation performed on each category. This 

prior knowledge of the individual nodule would be beneficial in selecting an algorithm that was optimized 

for that category; however, this was beyond the scope of this study. However, we did purposefully select 

nodules of varying characteristics to determine the tool’s robustness to nodule identity; similarly Zhao et 

al and Athelogou et al compared the volumetric error and size agreement of segmentation tools to include 

breakdowns of location, shape, and edge characteristic effects to assess the effect on segmentation 

quality46,77.  

We developed a criterion scoring method (Table 4.2) to compare the tools based on qualities that 

were deemed important for our purposes: segmentation error, repeatability, ease of use, and 

customization. The weighting for each of these scores was based on relative importance to our 

segmentation goals; researchers with different priorities (i.e. not requiring customization) can adjust the 

relative weighting to determine a suitable tool. While the previous studies comparing semi-automated 

tools used measures of segmentation error and repeatability, they did not incorporate ease of use or 

customization assessment46,77-79. Customization is particularly important as a semi-automated tool cannot 

perform perfectly on all cases; therefore, the ability to alter the segmentation post-run is essential to 

utilizing a single tool for large scale nodule analysis. While the customization and ease of use measures 

proposed in this study are subjective to the reader, our measures incorporate both the assessed 

segmentation quality and the ability of the tool to re-assess a segmentation problem. Incorporating these 

measures into the scoring criteria provides a more comprehensive analysis of a tool’s capability beyond 

accuracy and variability. As no segmentation algorithm is perfect, and with large-scale implementation 

some manual editing or correction is likely to be needed for difficult cases.  

In this chapter, we systematically compared five semi-automated segmentation tools using a 

common cohort of chest CT scans with results shown on the tool’s segmentation of pulmonary nodules. 

The best performing segmentation tool, ML, was used to segment the pulmonary nodules and surrounding 

parenchyma for machine learning pipelines discussed in Chapter 5: QIC-RATE and Chapter 6: 

Application of QIC-RATE to Histoplasmosis Classification. 
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CHAPTER 5: QIC-RATE 

This chapter is adapted from the publication, “Optimized Perinodular Parenchyma Features Promote High 

Performance Machine Learning Tool for Lung Cancer”, with accepted revisions in Medical Physics. 

Additional tool development exploratory studies are included in Appendices D through G.  

5.1. Introduction 

In Chapter 3 we investigated the utility of previously developed post-imaging MPMs to stratify 

lung nodules based on cancer risk, concluding that while these models can be improved through local 

dataset calibration, room for risk assessment improvement persists. MPM risk assessment has not been 

widely adopted for clinical use, with the current clinical assessment of pulmonary nodules still based 

primarily on nodule size, composition, and growth information. Guidelines such as the American College 

of Radiology’s Lung Imaging Reporting and Data System (Lung-RADS) criteria for pulmonary nodules 

identified with low-dose CT screening, the American College of Chest Physicians Evidence-Based 

Clinical Practice Guidelines, the British Thoracic Society Guidelines and the Fleischner society 

guidelines for incidental nodules use the size of the lung nodule as a key indicator to determine 

appropriate clinical follow-up procedures31,33,51,52.  

By only using clinician-collected variables, there is the potential that not all diagnosis-

informative data collected is being used to the full potential. CT scans contain a wealth of potential 

information with standardized base units of size (mm) and image value (HU). This standardized 

acquisition improves the quality and reproducibility of automatic quantitative imaging characteristics 

(QICs) that can be calculated from the image data. Risk assessment tools, developed through machine 

learning algorithms, can utilize QICs extracted directly from the CT scans, such as nodule shape and 

texture, to differentiate between malignant and benign disease states10-25. The traditional focus of 

imaging-based risk models for lung cancer has been on nodule and border features with a range in area-

under the receiver operator curve (AUC-ROC) performance (0.821 - 0.99)11-16. 

 The perinodular parenchyma has biological importance with respect to cancerous changes such as 

cell migration, inflammation, and vascularization. Morphological characteristics from this region 

including spiculation and structural distortion of the parenchyma have been reported as indicative of 

malignancy, improving observer performance, and included in the MPMs57,59,60,86. Recently, 

improvements in lung nodule classification have been demonstrated through the inclusion of perinodular 

parenchymal QICs using traditional machine learning (AUC-ROC: 0.93810 and 0.91524) and deep learning 

methods have indirectly examined parenchymal inclusion (AUC-ROC of 0.899 to 0.946)20-22, but the 

degree to which parenchyma has been included has varied. From the reported literature, it is not clear 
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where the optimal parenchymal radiological signal resides, and how these features interplay with features 

from the nodule and its borders.  

In this chapter, we develop a pipeline for machine learning tool development which utilizes 

features from the nodule and size-standardized regions of the surrounding parenchyma, termed 

Quantitative Imaging Characteristics for Risk Assessment from the Tumor and Environment (QIC-

RATE). We systematically investigate the optimal regions of perinodular parenchyma to use for feature 

extraction and classification. With a focus on feature transparency, we explore the trends within and 

between regions of perinodular parenchyma by nodule- standardized parenchymal quartile-bands. Finally, 

we compare the value QIC-RATE could have on follow-up pathways versus the established Fleischner 

Society guidelines in an independent validation dataset.  

5.2. Materials and Methods 

 A systematic processing pipeline was developed to identify the optimal feature set for QIC-

RATE, and independent validation testing, as depicted in Figure 5.1. The QIC-RATE tool development 

involved the selection of a feature set and classifier training, while validation was executed on the top 

performing candidate tool. The QIC-RATE tool development pipeline was built on a foundation of prior 

work from our lab10,11. The prior approach provided proof of the added benefit to computer-aided 

diagnosis of including perinodular signal over nodular signal alone. As more subjects provide more data 

about the true variability in the population, it is necessary to improve upon the mechanisms utilized in the 

prior work for use on a larger cohort. Table 5.1 summarizes the prior approach, the potential challenges 

identified in the methodology when adding additional cases, the solutions tested, and the final selected 

mechanism for QIC-RATE.  

5.2.1. Study Cohorts 

Subjects included 363 pulmonary nodules, ≤30mm in diameter (74 malignant, 289 benign) from 

three study data sources: COPDGene, NLST, and the SPIE LungX Challenge 26,40,47. The prior approach 

used a subset of 50 subjects from the current 363 cohort to demonstrate the value of feature extraction 

from the lung parenchyma10,11. An independent validation cohort of 100 pulmonary nodules (50 

malignant, 50 benign) from the INHALE study was used to test QIC-RATE41. Further demographics and 

scanning parameters for the two cohorts is described in Table 5.2. For more complete details on the 

origin datasets, please see Chapter 2.  
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Table 5.1: Identified areas of improvement in prior approach, solutions tested as part of this dissertation, and the selected 

approach that was implemented in the final QIC-RATE system. 

 Prior Approach11 Challenges Identified Solutions Tested Selected Approach 

Segmentation 

(Chapter 4) 

Manual nodule and 

parenchyma 

segmentation 

• Time intensive 
• Prone to inter- and 

intra- user variability 

Semi-automated 

segmentation methods 
1-5 

ML method  

Feature 

Extraction 

(Appendix D) 

304 nodule and 

parenchyma features 

describing image 

intensity and texture, 

and nodule border, 

shape, and size 

Improvement through 

inclusion of other 

features deemed 

potentially predictive in 

other literature 

Additional features: 
• Intensity 
• GLRL 
• GLSZ 
• NGTD 
• Size/Shape 

Extraction of all 

features in Tables 

5.3-4 

Set Reduction 

(Appendix E) 
Statistical 

significance 

Highly correlated 

features persist which can 

affect model stability 

• K-medoids 
• PCA 

K-medoids using 

k=adjusted best 

silhouette 

Set Selection 

(Appendix F) 

Leave-one-out feed-

forward feature 

selection from ANN 

• Time intensive 
• Selection linked to 

classifier (increases 

overtraining 

probability) 

• K-medoids 
• Majority Votes 
• Mutual Information 

Measures 
• Random Forest 

Importance 

Information 

optimization (IO) 

Classification 

(Appendix G) 

ANN 
• 2 hidden layers 
• Hyperparameters 
• Up to N/10 

features 

Improvement by:  

• different classifier 
• hyperparameter setup 
• Number of features 

allowed for selection 

• Support Vector 

machine 
• Conditional inference 

trees 
• Ensembling 
• Jittering 

hyperparameters 
• Up to N/5 features 

• Ensemble 

Artificial Neural 

Network 
• Built with 

jittered 

hyperparameters 
• On up to N/5 

features 
Definition of Abbreviations: ML – Mukhopadhyay-MatLab; GLRL – gray-level run-length; GLSZ – gray-level size-zone; 

NGTD – neighborhood gray-tone difference; ANN – artificial neural network; PCA – principle component analysis. 

The development cohort (N=363) was diverse in subject demographics, scanner parameters, and 

CT manufacturer; statistical difference in subject demographics existed between malignant and benign 

nodules (Table 5.2). As this cohort was established by combination of different parent academic studies, 

we explored the number of subjects that would have met lung cancer low-dose CT (LDCT) screening 

eligibility criteria based on age and smoking pack-years. Scanning parameters in the development cohort 

were in accordance with recommended protocols for high-resolution CT studies 87, with the exception of 

the NLST cases which was a LDCT protocol (reconstructed thin slice thickness). The demographics and 

scanning parameters for the validation cohort (N=100) were more evenly matched between malignant and 

benign cases due to the nature of the INHALE study’s inclusion criteria (Table 5.2). 
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Table 5.2: Demographic and scanning parameters for the QIC-RATE lung nodule study. 

  Malignant Benign p 

Development/Testing 

Subjects 74 289 - 

Study 

(COPDGene:NLST:LungX) 
30:6:38 239:8:42 < 0.01 

Age, yrs (mean±SD) 65.5 ± 11.3 53.2 ± 13.0 < 0.01 

Sex (Female: Male) 34:40 179:110 < 0.01 

Pack-years*, yrs (mean±SD) 37.7 ± 30.4 10.7 ± 15.7 < 0.01 

Nodule size, mm 

Range (mean±SD) 

5-30 

(13.6 ± 6.2) 

4-30 

(7.79 ± 13.3) 
< 0.01 

Nodule size ≤ 15mm 50 240 < 0.01 

LDCT screening eligible* 

(Yes: No) 
33:3 69:178 < 0.01 

Kilovoltage 

(range, mean) 

120-120 kVp, 

120 kVp 

120-120 kVp, 

120 kVp 
1.00 

Tube Current 

(range, mean) 

60-440 mA,† 

339 mA 

40-500 mA,† 

330 mA 
0.89 

Slice thickness 

(range, mean) 

0.6-1.3 mm, 

0.8 mm 

0.6-1.3mm, 

0.7mm 
0.97 

CT Manufacturer 

(GE:Philips:Siemens) 
19:35:20 86:97:106 <0.01 

Validation 

Subjects 50 50 - 

Study (INHALE) 50 50 1.00 

Age (mean±SD) 64.0 ± 10.7 62.5 ± 10.9 0.46 

Sex (Female: Male) 35:15 31:19 0.34 

Pack-years*, years (mean±SD) 33.5 ± 30.1 30.1 ± 23.6 0.51 

Nodule size, mm 

Range (mean±SD) 

5-30 

(19.9 ± 7.4) 

9-30 

(13.66 ± 4.8) 
< 0.01 

Nodule size ≤ 15mm 17 35 < 0.01 

LDCT screening eligible 

(Yes: No) 
18:32 16:34 0.67 

Kilovoltage (range, mean) 
120-120 kVp, 

120 kVp 

120-120 kVp, 

120 kVp 
1.00 

Tube Current (range, mean) 
160 – 351 mA, 

237 mA 

160 – 386 mA, 

265 mA 
0.62 

Slice thickness (range, mean) 
0.6-0.8 mm, 

0.7 mm 

0.6-0.8 mm, 

0.7 mm 
0.98 

CT Manufacturer 

(GE:Philips:Siemens) 
17:19:14 16:22:12 0.82 

Definition of abbreviations: SD - standard deviation; LDCT - low dose computed tomography; GE - General Electric; *: 

smoking pack-year data was not available for the LungX Challenge; †: low-dose NLST scans included were reconstructed 

to higher resolution at time of acquisition.  

5.2.2. Segmentation of Nodule and Parenchyma 

The nodule and parenchyma were semi-automatically segmented into ROI using a modified 

version of the proposed pipeline by Dhara et al. 85,88. For more complete details on the segmentation tool 

select process, please see Chapter 4: Segmentation. The nodule mask was grown using a binary image 

dilation to produce parenchyma quartile-bands: 25%, 50%, 75%, and 100% of the maximum in-plane 

diameter of the nodule (Figure 5.1). Candidate QIC-RATE tools were created using a nesting pattern of 

the bands: Nodule (no bands), Margin (Nodule + 25% band), Immediate (Nodule + 25% band + 50% 
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band), Extended (Nodule + 25% band + 50% band + 75% band), and Extended+ (Nodule + 25% band + 

50% band + 75% band + 100% band).  

 

Figure 5.1: Overview of QIC-RATE tool development and validation pipeline. The depiction of the varying amounts of 

parenchyma tested through the pipeline (in quartile-bands) include; (1) Nodule, (2) Margin [nodule, 25%], (3) Immediate 

[nodule, 25%, 50%], (4) Extended [nodule, 25%, 50%, 75%], (5) Extended+ [nodule, 25%, 50%, 75%, 100%]. Definition 

of abbreviations: QIC-RATE - , volume of interest (VOI), information objective function maximum point (IOmax), area 

under the receiver operating characteristic curve (AUC-ROC). 

5.2.3. Development of QIC-RATE 

Quantitative CT features were automatically extracted from the nodule and parenchyma quartile 

volumes to produce candidate QIC-RATE tools (Figure 5.1, Table 5.3-5.4). These included 14 

volumetric measures of intensity histogram (IH), 136 volumetric Law’s energy measures (LTEM), 13 

volumetric gray-level run-length measures (GLRL), 13 volumetric gray-level size-zone measures 

(GLSZ), 5 volumetric neighborhood gray-tone difference measures (NGTD), and 17 measures of size and 

volumetric shape (SzSp) including 11 border measures (BASC and BCRP) 10,89-94. For full overview on 

these QICs, see Appendix D.  



36 

Features were clustered based on pair-wise correlations using the k-medoids method resulting in 

k-clusters with k-representative medoid features95,96. Determination of k was done by optimization of the 

average cluster silhouette with the method adjusted to not penalize for clusters of one feature. For a full 

summary of the tests used to determine this method of feature reduction, see Appendix E. From the 

reduced group of medoids, a set of predicting features was selected using an objective function of 

information theory measures97. The maximum selected set size was determined from the information 

objective function maximum point (IOmax). For a full summary of the tests used to determine this method 

of feature set selection, see Appendix F. In cases where the IOmax was larger than one predictor for every 

five to ten cases the set size was capped at 72 features98. The selected feature sets were used to train the 

ANNs with performance analyzed through 10-fold kCV (k-fold cross validation, see Appendix A.3). As 

random initialization of weights in ANN development can affect classifier performance, we further 

developed an ensemble of ten ANNs (ENN) for final prediction values. For full details of classifier 

method selection and training, see Appendix G. 

5.2.4. Performance and Comparison 

Detailed information on the specific performance measures is included in the Appendix A. In 

brief, tool performance was assessed using AUC-ROC (Delong) and AUC-PR. To determine the 

statistical advantage of one candidate tool over another on a given dataset, we employed Delong and 

McNemar’s (Youden J statistic threshold) tests. The potential impact on clinical follow-up response was 

assessed by comparing the predictions from the QIC-RATE tool to the Fleischner Society Pulmonary 

Nodule Follow-up Guidelines.  

Table 5.3: Size and shape features extracted from the nodule ROI.  

Feature Groups Features 

Border Centroid Radial Rays (BCRR) • Mean of Border 

• Standard Deviation of Border 

• Mean of Slopes 

• Standard Deviation of Slopes 

• Mean of Columns 

• Standard Deviation of Columns  

Border Absolute Sphere Comparison (BASC) • Mean 

• Variance 

• Kurtosis 

• Skewness 

• Range 

Whole Tumor Characteristics (WTC) • Sphericity 

• Maximum in-plane diameter (RECIST) 

• Radius 

• Volume * 

• Equivalent H20 Area
 
*,% 

• Equivalent H20 Diameter *, % 

*: new feature; %: CT-specific feature 
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Table 5.4: Intensity and texture features extracted from the nodule and the perinodular parenchyma ROIs.  

Feature Group Features 

Intensity Histogram (IH) • Mean 

• Variance 

• Maximum 

• Minimum 

• Median 

• Full-Width-at-Half-Maximum 

• Entropy 

• Kurtosis 

• Skewness 

• 5th Percentile *  

• 95th Percentile * 

• 25th Percentile * 

• 75th Percentile * 

• Proportion over 100 HU *, % 

Law’s Texture (LTEM) • Mean Energy Measures (14 2D, 34 3D) 

• Variance Energy Measures (14 2D, 34 3D) 

• Kurtosis Energy Measures (14 2D, 34 3D) 

• Skewness Energy Measures (14 2D, 34 3D) 

Gray Level Size Zone Texture (GLSZ) • Small Zone Emphasis * 

• Large Zone Emphasis * 

• Gray-Level Non-uniformity * 

• Zone-Size Non-uniformity * 

• Zone Percentage * 

• Low Gray-Level Zone Emphasis * 

• High Gray-Level Zone Emphasis * 

• Small Zone Low Gray-Level Emphasis * 

• Small Zone High Gray-Level Emphasis * 

• Large Zone Low Gray-Level Emphasis * 

• Large Zone High Gray-Level Emphasis * 

• Gray-Level Variance * 

• Zone-Size Variance * 

Neighborhood Gray Tone Difference (NGTD) • Coarseness * 

• Contrast * 

• Busyness * 

• Complexity * 

• Strength * 

Run Gray Level Length Texture (GLRL) • Short Run Emphasis * 

• Long Run Emphasis * 

• Gray-Level Non-uniformity * 

• Run-Length Non-uniformity * 

• Run Length Percentage * 

• Low Gray-Level Run Emphasis * 

• High Gray-Level Run Emphasis * 

• Short Run Low Gray-Level Emphasis * 

• Short Run High Gray-Level Emphasis * 

• Long Run Low Gray-Level Emphasis * 

• Long Run High Gray-Level Emphasis * 

• Gray-Level Variance * 

• Run-Length Variance * 

*: new feature; %: CT-specific feature 
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5.3.  Results 

5.3.1. QIC-RATE Performance 

  The best performing candidate tool included the nodule and surrounding tissue from the 25%, 

50%, and 75% quartile-bands (Extended QIC-RATE). In the development cohort, the Extended QIC-

RATE tool achieved an AUC-ROC of 1.0 – or complete separation of the classes along the ensemble-

ANN decision boundary and achieved the highest AUC-PR (0.945). The performance of the undivided, 

inclusive (border-to-75%) ring was also calculated and achieved weaker measures (AUC-ROC=0.938, 

AUC-PR=0.916). On the independent validation cohort, the Extended tool achieved an AUC-ROC=0.965 

(accuracy 98%, sensitivity 100%, specificity 96%). Delong and McNemar’s test comparisons showed the 

four tools incorporating parenchymal signal (Margin, Immediate, Extended, Extended+) were statistically 

better than the Nodule tool (p < 0.01); there was no statistical difference between the candidate tools 

developed with parenchymal features discriminatory power. Figure 5.2 shows a visual representation of 

the feature set selection over the five tool candidates, demonstrating the number of perinodular 

parenchyma features included in the candidate tools and the wealth of feature types selected.  

For the Extended tool the objective function’s IOmax of 76 predictors was adjusted to 72 predictors 

to prevent overfitting, to produce the Extended and Extended+ tools (Table 5.5). To test if fewer selected 

features were needed to maintain this boundary plane we built ensemble-ANNs for each feature set size 

between 2 and 72 predictors. Complete class separation was achieved for all ensemble-ANNs between 50 

and 72 predictors (AUC-ROC = 1.0, AUC-PR = 0.945). The remainder of the results will focus on the 

Extended tool.  

Table 5.5: Performance results from 10-fold cross validation on the development cohort of QIC-RATE candidate tools. 

Candidate Set Size AUC-ROC AUC-PR Youden  Sensitivity  Specificity  

Nodule 22 0.919 0.891 0.36 0.85 0.92 

Margin 38 0.982 0.916 0.28 0.90 0.98 

Immediate 55 0.998 0.943 0.40 0.93 0.98 

Extended 50 1.000 0.945 0.38 1.00 1.00 

Extended+ 72 0.998 0.944 0.35 0.93 0.98 

Definition of abbreviations: AUC-ROC – area-under-curve of receiver-operator characteristic; AUC-PR – area-under-

curve of precision-recall 

5.3.2. Extended QIC-RATE Feature Set  

The fifty selected features included 13 IH, 15 GLRL, 12 GLSZ, 5 NGTM, 1 ASC, and 3 SzSp. The region 

from which the included features were extracted included 19 nodular, 2 of band 25%, 12 of band 50%, 

and 17 of band 75%, such that the final model contained more features extracted from the parenchyma 

than from the nodule. In the development cohort, cutoff values of 0.38 from the receiver operating 

characteristic prioritize the correct classification of malignant cases (Figure 5.3). Application of the 
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Extended QIC-RATE in the independent validation cohort resulted in an accuracy of 98%, with no 

misclassification of malignant cases. 

 

 

Figure 5.2: Visualization of feature selection by category for each of the five candidate tools – object color indicates the 

candidate tool and object shape indicates the ROI of feature extraction. Definition of abbreviations: IH – intensity 

histogram; GLRL – gray-level run-length; GLSZ – gray-level size-zone; NGTD – neighborhood gray-tone difference; 

SzSp – size and shape 
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Figure 5.3: The Extended QIC-RATE resulted in complete division of malignant and benign lung nodule cases in cross 

validation testing of the development cohort (363 cases), with a threshold of 0.38 as determined using the Youden’s J 

statistic. Output lung cancer risk prediction values range from 0 (confidently benign) to 1(confidently malignant). 

 

A complete list of the fifty selected features for the Extended QIC-RATE tool with mean, 

standard deviation, p-value (from t-test or Wilcoxon rank sum test as appropriate), and Pearson’s 

correlation with nodule size is included (see Table 5.6) which lists the features selected with statistics. To 

summarize, the first five features selected included two features from the surrounding parenchyma 

quartile-bands, followed by three nodule features. Selected first was a NGTD feature describing the 

coarseness of texture in the 75% parenchyma quartile-band, which is a high order feature where large 

values represent areas where the gray-tone differences are small, therefore leading to a high degree of 

local uniformity in intensity. Malignant cases had lower values (0.005±0.013) than benign cases 

(0.011±0.017) and this was statistically different (p = 0.023). Next, feature selection chose a GLSZ 

texture feature indicating large zone emphasis in the 50% parenchyma quartile-band. This feature 

multiplies each zone by the size of the zone squared, thus high values imply large zones within the 

texture. Again, malignant cases had lower values (159.5±386.4), than benign (3087.1±8332.7), this was 

statistically significant (p=0.007). The third selected feature was GLSZ extracted from the nodule 

indicating small zone low gray-level emphasis with malignant cases having lower values (0.026±00.23) 

than benign (0.036±0.025) at a significant level (p<0.001). This feature is larger when there is an 

emphasis of small zones of low intensity within the texture. The next two selected features were also 

nodule-based being the entropy (IH) and high gray-level zone emphasis (GLSZ). 

 

Table 5.6: Fifty features selected for use in Extended QIC-RATE tool, including p-value and correlation with nodule size. 

# 
Feature 

Malignant Benign 
p r-size 

Mean SD Mean SD 

1 75% Coarse Texture 5.40E-03 1.36E-02 1.04E-02 1.65E-02 0.02 -0.42 

2 50% Large Zone Emphasis 1.60E+02 3.86E+02 3.09E+03 8.33E+03 < 0.01 0.37 

3 Nodule Small Zone Low GL Emphasis 2.61E-02 2.30E-02 3.61E-02 2.45E-02 < 0.01 -0.30 



41 

Table 5.6, continued: Fifty features selected for use in Extended QIC-RATE tool.  

# 
Feature 

Malignant Benign 
p r-size 

Mean SD Mean SD 

4 Nodule Entropy HU 7.38E+00 9.30E-01 7.25E+00 1.03E+00 0.33 0.32 

5 Nodule High GL Zone Emphasis 2.55E+02 1.16E+02 2.52E+02 7.54E+01 0.34 -0.16 

6 75% Long Run High GL Emphasis 1.79E+02 9.12E+01 1.40E+02 7.81E+01 < 0.01 -0.05 

7 Nodule Run Length Percentage 9.19E-01 5.98E-02 9.02E-01 9.72E-02 0.43 -0.13 

8 75% Contrast Texture 2.55E-01 2.49E-01 1.25E-01 1.38E-01 < 0.01 -0.11 

9 Nodule GL Variance Zones 5.61E-02 2.03E-02 4.79E-02 1.45E-02 < 0.01 0.18 

10 50% Run length Variance 2.40E-04 1.37E-04 2.80E-04 9.92E-05 < 0.01 -0.29 

11 75% 95th Percentile HU -9.86E+02 4.50E+01 -9.60E+02 4.36E+01 < 0.01 -0.17 

12 75% Zone Size Variance 6.99E-05 1.18E-04 1.25E-04 1.20E-04 < 0.01 -0.37 

13 Nodule Kurtosis HU 6.65E+00 9.08E+00 5.47E+00 7.24E+00 < 0.01 0.11 

14 75% GL Run Variance 2.34E-02 2.56E-02 2.06E-02 3.47E-02 0.02 -0.20 

15 Nodule Large Zone Low GL Emphasis 1.36E+01 4.79E+01 1.41E+02 4.89E+02 0.52 0.00 

16 50% Variance HU 3.36E+04 1.61E+04 2.20E+04 1.25E+04 < 0.01 0.00 

17 Nodule Run Length Variance 1.78E-04 2.07E-04 2.45E-04 3.42E-04 0.04 -0.19 

18 Nodule Large Zone High GL Emphasis 6.91E+04 3.37E+05 5.43E+04 2.04E+05 0.46 0.04 

19 75% Full-Width-at-Half-Maximum 4.90E-02 5.41E-02 6.34E-02 4.16E-02 < 0.01 0.29 

20 75% Mean HU -7.79E+02 8.79E+01 -8.12E+02 7.87E+01 < 0.01 -0.09 

21 50% Maximum HU -2.20E+02 5.63E+01 -2.37E+02 6.89E+01 < 0.01 0.30 

22 Nodule Short Run Low GL Emphasis 2.51E-02 2.19E-02 3.85E-02 2.60E-02 < 0.01 -0.26 

23 Nodule Long Run Low GL Emphasis 3.46E-02 3.98E-02 7.45E-02 1.05E-01 < 0.01 -0.06 

24 Nodule GL Variance Runs 8.49E-02 8.18E-02 7.09E-02 5.53E-02 0.35 -0.21 

25 75% Busyness Texture 2.75E+00 3.21E+00 2.55E+00 4.00E+00 < 0.01 0.64 

26 Nodule High GL Run Emphasis 2.49E+02 1.40E+02 2.40E+02 1.17E+02 0.87 -0.17 

27 75% Median HU -8.17E+02 9.00E+01 -8.45E+02 7.71E+01 < 0.01 -0.11 

28 75% GL Non-uniformity Zones 4.68E-02 1.18E-02 5.28E-02 1.27E-02 < 0.01 -0.16 

29 Nodule GL Non-uniformity Runs 7.67E-02 4.12E-02 7.26E-02 4.65E-02 0.09 0.13 

30 50% Small Zone High GL Emphasis 2.21E+02 8.03E+01 1.89E+02 6.84E+01 < 0.01 -0.13 

31 50% GL Variance Run 3.93E-02 6.29E-02 3.15E-02 3.76E-02 0.01 -0.28 

32 Equivalent H20 Area Centroid Slice 1.25E+03 1.05E+03 1.11E+03 1.28E+03 0.02 0.45 

33 50% Entropy HU 8.58E+00 7.17E-01 8.03E+00 7.43E-01 < 0.01 0.30 

34 Nodule Large Zone Emphasis 4.44E+02 1.09E+03 1.71E+03 4.86E+03 0.36 0.02 

35 25% GL Non-uniformity Run 4.70E-02 3.74E-02 5.65E-02 3.52E-02 < 0.01 0.02 

36 Nodule Sphericity 5.32E-01 1.62E-01 5.94E-01 1.94E-01 < 0.01 -0.48 

37 75% GL Variance Zones 4.26E-03 1.85E-02 3.64E-03 1.13E-02 0.02 -0.24 

38 Nodule Contrast Texture 4.06E-01 8.68E-01 5.03E-01 6.10E-01 0.02 -0.40 

39 RECIST Diameter 1.36E+01 6.20E+00 7.87E+00 1.33E+01 < 0.01 1.00 

40 50% Full-Width-at-Half-Maximum 4.46E-02 5.13E-02 5.72E-02 3.90E-02 < 0.01 0.37 

41 75% Low GL Run Emphasis 6.17E-02 4.66E-02 4.97E-02 3.83E-02 0.06 < 0.01 

42 50% Contrast Texture 3.68E-01 2.97E-01 2.15E-01 1.95E-01 < 0.01 -0.25 

43 50% Complexity Texture 1.19E+03 4.65E+02 8.86E+02 3.66E+02 < 0.01 -0.16 

44 25% Long Run Emphasis 1.56E+01 6.37E+01 5.86E+02 1.80E+03 0.21 0.13 

45 Mean Absolute Sphere Comparison 4.14E-01 2.87E-01 4.54E-01 3.30E-01 0.73 0.36 

46 75% 25th Percentile HU  -9.96E+02 3.88E+01 -9.73E+02 4.15E+01 < 0.01 -0.20 

47 75% Maximum HU -2.35E+02 9.71E+01 -2.66E+02 1.21E+02 < 0.01 0.28 

48 75% Skewness HU 1.49E+00 8.84E-01 2.08E+00 9.62E-01 < 0.01 0.17 

49 50% GL Non-Uniformity Run 5.63E-02 1.97E-02 7.88E-02 3.67E-02 < 0.01 0.28 

50 75% Small Zone Low GL Emphasis 2.14E-02 1.23E-02 1.89E-02 1.12E-02 0.13 -0.04 

Definition of abbreviations: SD – standard deviation; HU – Hounsfield unit; GL – gray level; r-size – Pearson’s 

correlation  with nodule RECIST diameter 
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Presented in Table 5.7 are the features used in the Extended QIC-RATE tool, which were 

selected from more than one location (i.e. nodule and parenchyma, or different quartile-bands of 

parenchyma), which was 23/50 features. While these features are extracted in the same manner, the 

spatial location of the extracted region is effective. Large values in entropy features indicate a large 

amount of randomness in gray levels of the ROI. Full-width-at-half-maximum (FWHM) of the 

histograms of parenchyma bands tended to be smaller in malignant cases indicating a thinner, more 

peaked histogram shape. The gray-level non-uniformity demonstrates while the malignant nodule showed 

increased non-uniformity, the tissue surrounding the malignant nodules tended to be lower than their 

benign counter-parts. Run length variance tended to be lower in malignant cases indicating more 

homogeneous runs. The small zone low gray-level emphasis demonstrated a converse effect with 

malignant nodules tending to have lower values while the tissue surrounding those nodules obtained a 

mean higher than that of benign nodule’s surrounding tissues. Similarly, the contrast in texture showed a 

converse effect between nodule and parenchyma signal. The high-order feature is high in the surrounding 

malignant nodules indicating increased amount of local variation in intensity. On the other hand, contrast 

texture tends to be lower in the nodule proper indicating a smaller amount in local intensity variation. 

While there was a size bias in the development cohort (malignant: 13.6mm±6.2, benign: 7.8mm±13.3, 

p<0.001), the maximum in-plane diameter was selected later (39/50) in the Extended QIC-RATE. In 

addition, on nodules with size ≤ 15mm, the Extended QIC-RATE tool maintained high performance in 

both development (AUC-ROC=1.0, AUC-PR=0.943) and validation (AUC-ROC=0.998, AUC-

PR=0.877).  

5.3.3. Fleischner Society Guidelines Comparison 

We analyzed the potential effect the QIC-RATE tool would have on the follow-up response 

compared to the Fleischner Society Pulmonary Nodule Follow-up Guidelines as the INHALE study used 

for validation was not a lung cancer screening cohort (see Table 5.8, which provides the results of 

applying the guidelines to the validation)41. These guidelines are stratified by size and nodule 

composition, as all nodules in this study were solid, we can separate into three categories: Category-1: CT 

in 12 months, Category-2: CT in 6-12 months, and Category-3: CT, biopsy, or positron emission 

tomography in 3 months. No size distribution criterion was enforced on nodule inclusion in this study. As 

such, 97% of the validation cohort fell into the third size-based category; this differed from the 

development cohort where the split was more balanced (Category 1: 23%, Category 2: 35%, Category 3: 

41%). The Extended QIC-RATE tool identified 50 malignancies that would have required follow-up with 

a waiting period of 3-12 months51. The Extended QIC-RATE tool also recognized 48 benign nodules that 

would have required a 3-month follow-up with imaging or biopsy. We demonstrate the potential 

acceleration of malignant follow-ups over the Fleischner guidelines; for three malignant cases, the 
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Fleischner Society guidelines would have recommended a CT in 6-12 months while the Extended QIC-

RATE tool would immediately send these patients to treatment. Similarly, for an additional 45 subjects 

with malignant nodules, the guidelines would have recommended a follow-up in 3 months of imaging 

and/or biopsy.  

Table 5.6: Example Feature trends in malignant nodules from Extended QIC-RATE. 

Group Feature # Trend 
Malignant Benign 

p 
Mean SD Mean SD 

IH 

Nodule Entropy 4 ↑ 7.38 0.93 7.25 1.03 0.33 

50% Entropy 33 ↑ 8.58 0.72 8.03 0.74 <0.01 

50% Maximum HU 21 ↑ -220.4 56.3 -236.6 68.9 <0.01 

75% Maximum HU 47 ↑ -235.0 97.1 -265.6 120.7 <0.01 

50% Full-Width-at-Half-Maximum 40 ↓ 0.04 0.05 0.06 0.04 <0.01 

75% Full-Width-at-Half-Maximum 19 ↓ 0.05 0.05 0.06 0.04 <0.01 

GLRL 

Nodule GL Non-uniformity Runs 29 ↑ 0.08 0.04 0.07 0.05 0.09 

25% GL Non-uniformity Run 35 ↓ 0.05 0.04 0.06 0.04 <0.01 

50% GL Non-uniformity Run 49 ↓ 0.06 0.02 0.08 0.04 <0.01 

Nodule Run Length Variance 17 ↓ 1.8E-04 2.1E-04 2.5E-04 3.4E-04 0.04 

50% Run length Variance 10 ↓ 2.4E-04 1.4E-04 2.8E-04 9.9E-05 <0.01 

Nodule GL Variance Runs 24 ↑ 0.08 0.08 0.07 0.06 0.35 

50% GL Variance Run 31 ↑ 0.04 0.06 0.03 0.04 0.01 

75% GL Variance Run 14 ↑ 0.02 0.03 0.02 0.03 0.02 

GLSZ 

Nodule GL Variance Zones 9 ↑ 0.06 0.02 0.05 0.01 <0.01 

75% GL Variance Zones 37 ↑ 4.3E-03 1.9E-02 3.6E-03 1.1E-02 0.02 

Nodule Large Zone Emphasis 34 ↓ 443.6 1089.9 1708.6 4862.4 0.36 

50% Large Zone Emphasis 2 ↓ 159.5 386.4 3087.1 8332.7 0.01 

Nodule Small Zone Low GL Emphasis 3 ↓ 0.03 0.02 0.04 0.02 <0.01 

75% Small Zone Low GL Emphasis 50 ↑ 0.02 0.01 0.02 0.01 0.13 

NGTD 

Nodule Contrast Texture 38 ↓ 0.41 0.87 0.50 0.61 0.02 

50% Contrast Texture 42 ↑ 0.37 0.30 0.22 0.19 <0.01 

75% Contrast Texture 8 ↑ 0.26 0.25 0.12 0.14 <0.01 

Definition of abbreviations: SD – standard deviation; HU – Hounsfield unit; GL – gray level; IH – intensity histogram; 

GLRL – gray level run length; GLSZ – gray level size zone; NGTD – neighborhood gray-tone difference 

 

Table 5.7: Extended QIC-RATE tool compared to Fleischner Society Pulmonary Nodule Follow-up Guidelines. 

Fleischner Size-based 

Recommendations 

Malignant Benign Time 

reduction 

(months) 
Pathology 

QIC-RATE-

prediction 
Pathology 

QIC-RATE-

prediction 

< 6 mm FFU: CT in 12 months  1 1 0 0 12 

6 to 8 mm 
FFU: CT in 6-12 

months  
2 2 0 0 12-24 

> 8 mm 
FFU: CT, Biopsy, or 

PET-CT in 3 months  
47 47 50 48 285 

Definition of abbreviations: FFU – Fleischner Society follow-up recommendations for solitary pulmonary nodule 
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5.4. Discussion 

We have developed a high performing lung nodule classification approach using radiomic 

features of the lung and surrounding parenchyma extracted from CT data, and validated the performance 

in an independent validation cohort. We discovered that features from three separate perinodular 

parenchymal quartile-bands contributed various texture features to improve the model performance, at a 

level that was not achievable with one inclusive area of comparable size. 

Other studies have explored the inclusion of perinodular features from the surrounding 

parenchyma for classification of lung nodules. A recent study comparing the performance of human 

observers to a computer algorithm showed observer interpreted broader characteristics such as 

spiculation, and disruption of perinodular parenchymal architecture as significant indicators of 

malignancy; however, subjective assessment of these characteristics is associated with high degree of 

observer variability86. Dilger et al (prior approach), demonstrated the potential of quantitative texture 

features for improved classification in a cohort of 50 subjects, using bounding boxes for capturing 

parenchymal signal approximately proportional to nodule size and whole lung density measures, with 

optimal classifier AUC-ROC of 0.93810. Huang et al. more recently demonstrated using a cohort of 186 

subjects from the NLST trial that a machine learning system constructed with perinodular features 

achieved an AUC-ROC of 0.91524. Our comparison with this tool shows a direct overlap of two nodule 

selected features: nodule entropy and nodule variance. Also, two of their perinodular features selected 

from the small parenchyma ring surrounding the nodule were similar to our selected parenchyma quartile-

band features: surrounding variance (at 25%, 50%) and surrounding parenchyma maximum intensity (at 

25%, 50%, 75%).  

The method of feature set selection used in our study is not only independent of classifier 

performance but also provides separate insight into the connections amongst imaging features and 

between characteristics and disease classification. In this study, the top two features were extracted from 

parenchymal bands distant to the nodule which provides evidence that there are more global changes in 

the lobe characteristics that imaging can detect. Decoding the spatial relationship between radiomic 

features from the parenchyma surrounding lung nodules presents future opportunity to advance the QIC-

RATE tool analysis beyond a binary diagnosis. The field of transport oncophysics is relatively new, but 

holds promise in understanding the mass transport differentials of malignancy99. With a dataset classified 

in these differentials, the Extended QIC-RATE tool could be used as an effective delineator of mass 

transport.  

This study did include some limitations. The malignant tumors in both the development and 

validation cohorts were larger on average than their benign counterparts creating a size bias between the 

classes. While RECIST diameter was selected in the final model (39/50), it was not predominantly 
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ranked, the other selected features were not highly correlated with the nodule size. While this bias exists 

in both cohorts, there was still a range in nodule size with some small malignant cases and some large 

benign cases; if size was a driving factor, we would have expected to see a greater disparity in 

performance in these nodules particularly. The CT data quality used in this study is not the current clinical 

standard (LDCT or clinical chest with contrast) but rather a cohort of high-resolution multi-center trial CT 

scans; however, it does demonstrate the performance advantage in using high quality scans and 

incorporating the perinodular signal. Our group has previously demonstrated the effects of LDCT and 

ultra-LDCT protocols on quantitative lung and airway measurements100. The model here purports the 

diagnostic quality of features extracted from high quality scans, of which most were not LDCT scans or 

subjects eligible for LDCT screening. Further studies investigating the transference of these high-

resolution features to LDCT is needed to determine the performance of the Extended tool on lower-

resolution scans. If transference of features to LDCT were to decrease the performance of the QIC-RATE 

tool, this would show the increased value of high-dose CT for the characterization of disease and 

reduction of repeated imaging studies would keep radiation dosage low. 

We included only solid nodules in this study. In our validation cohort, only 34% would have met 

LDCT screening eligibility, making comparisons to the Fleischner guidelines more suitable for 

comparison than Lung-RADS. Assuming all follow-ups complied with the guidelines and patients were 

seen at the earliest follow-up point, the Extended QIC-RATE tool would reduce patient wait-time on 

malignant nodules by a cumulative 165 months, or on average 3.3 months per patient.  

This study included a large dataset with histopathology confirmed malignant cases. The dataset 

we have assembled includes multi-center variability, indicative of generalizability to a wide study 

population. As the algorithm is based only on radiological features, the approach presents a pipeline 

integration advantage without the need for separate (and potentially subjective) data extraction and 

inclusion. The high accuracy of our approach can support clinician’s higher confidence in risk assessment 

output and hence adherence to follow-up in concordance with the assigned class. This presents the 

potential to decrease the burden of un-necessary clinical follow-up of benign tumors and the timely and 

efficient treatment of those with cancerous tumors.  

This chapter demonstrated the proposed approach for the QIC-RATE classification tool pipeline 

development using methods that allow for feature-transparency. Here, we demonstrate the QIC-RATE 

tool’s accuracy using nodule standardized, perinodular parenchyma features. We quantified the 

theoretical benefit the Extended QIC-RATE -tool could have on the follow-up response compared to the 

Fleischner Society Pulmonary Nodule Follow-up Guidelines in reducing follow-up of benign nodules and 

expediting treatment of malignant nodules. The high performance of this method lends credence to its 

ability to be applied to more complex classification problems. The remaining chapters of this dissertation 
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use the QIC-RATE pipeline to look at sub-classification of binary diagnosis into histoplasmosis vs non-

small cell lung cancer (Chapter 6: Application of QIC-RATE to Histoplasmosis Classification), 

COPD-related risk variables and binary diagnosis of lung nodules (Chapter 7: Application of QIC-

RATE to Global Lung Measures), and finally to demonstrate the transferability of this pipeline to other 

diseases, modalities, and body-parts we applied it to large cohort of breast mammography masses 

(Chapter 8: Application of QIC-RATE to Breast Tumor Classification).  
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CHAPTER 6: APPLICATION OF QIC-RATE TO HISTOPLASMOSIS CLASSIFICATION 

6.1. Introduction 

Histoplasmosis is a fungal infection which is endemic to Iowa and other regions of the 

Mississippi, Missouri and Ohio River vallies101. This disease often presents as a pulmonary nodule via 

radiographic imaging with x-ray or CT. Histoplasmosis contributes to the clinical problem of 

differentiating cancerous lung nodules from nodules of benign pathology on chest CT within endemic 

regions, particularly as the nature of histoplasmosis lends to increased avidity on positron emission 

tomography (PET). An investigation based on data collected from the NLST demonstrated that clinicians 

within ‘histoplasmosis-belts’ were more conservative (lower false-positive) with the assessment of 

solitary nodules than clinicians outside the endemic regions102. 

Traditional nodule tracking guidelines such as Fleischner follow-up may not apply to populations 

living in ‘Histo-belts’, where less aggressive interventions may be more appropriate103. Radiomic features 

could serve as an assistive method for further characterizing, beyond size, these tumors on the first 

imaging timepoint. There is little prior work on identifiable qualitative or quantitative imaging features 

that are indicative of a histoplasmosis nodule. This chapter provides a proof of concept on a matched 

cohort of clinical cases with confirmed histoplasmosis or non-small cell lung cancer (NSCLC) comparing 

human observer classification performance to QIC-RATE classification performance.  

6.2. Materials and Methods 

6.2.1. Study Population 

Subject included were part of a larger cohort collected retrospectively from the University of 

Iowa Hospitals and Clinics, located in a region endemic for Histoplasmosis11,104. With Institutional Board 

Approval, radiology reports from thoracic CT scans were text searched for the terms “pulmonary nodule” 

or “lung nodule”. The electronic medical records (Epic, WI) from identified patients were manually 

searched for inclusion criteria of having diagnosis of pulmonary nodule through histopathology and CT 

imaging of solitary pulmonary nodule (4-30mm) prior to diagnosis, further details about this dataset can 

be found in Chapter 2. These subjects were matched based on age, sex, and smoking history.   

6.2.2. QIC-RATE Tool Application 

The QIC-RATE pipeline described in Chapter 5 was applied with slight modifications to the features 

to accommodate the high variability in CT acquisition protocol from the retrospective, clinically acquired 

data. To summarize, the nodule and surrounding parenchyma were segmented semi-automatically using a 

seed-click method described in Chapter 4. In a preliminary study of the full (unmatched) cohort, it was 

determined that the superior method of parenchymal inclusion for this diverse population was the 
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inclusive rings; utilization of the exclusive bands was performed as a comparison to rings with decreased 

performance (see Appendix C.3 for details on parenchymal segmentation). The perinodular region 

identified was segmented into rings that were nodule size-standardized through a nodule mask dilation 

procedure at 25%, 50%, 75%, and 100% the diameter for five candidate tools (Nodule, Margin, 

Immediate, Extended, Extended+). One hundred and one quantitative imaging characteristics describing 

intensity and 2D texture were extracted from the nodule and perinodular regions; 17 QICs describing 

border, size, and shape features were also extracted from the nodule mask. Highly correlated QICs were 

clustered using k-medoids clustering and the resulting medoids were sent through information theory-

based feature set selection. The selected feature set was used to build an ensemble of artificial neural 

networks (ENNs) to differentiate between Histoplasmosis and NSCLC using leave-one-subject-out cross 

validation (Appendix A.3) for performance measure assessment.  

6.2.3. Observer Assessment 

We performed a controlled observer study on the full cohort of 71 plus 29 repeated cases (total of 

100 cases provided to the observer) to examine the inter- and intra- observer variability. Four observers (2 

Radiologists, 2 Pulmonologists) of varying experience were each provided de-identified CT data and 

accompanying basic clinical information in a manner blinded to diagnosis. The clinical information 

provided included, subject age, sex, PET avidity, and radiology report noted presence of cavitation or 

calcification. The observers were asked to provide a categorical risk (low, med, high) for NSCLC and a 

continuous analog risk between 0 (likely histoplasmosis) and 1 (likely NSCLC).  

6.2.4. Statistical Assessment and Performance Measures 

Statistical performance was determined using the methods described in Appendix A. In brief, 

QIC-RATE and observer continuous analog risk assessment performance were measured using AUC-

ROC (Delong) and Youden’s J statistic. McNemar’s test was used to compare binary classification 

differences. Interclass correlation coefficient (ICC) was used as the assessment of consistency or 

reproducibility of continuous (0-1) risk made by different observers on the same nodule, the guidelines 

put forth by Cicchetti were used for interpretation105. Weighted Cohen Kappa and percent agreement were 

used to assess the categorical agreement among readers106.  

6.3. Results 

6.3.1. Matching Reduces Demographic and Size Bias in Cohort 

A total of 151 suitable subjects (49 histoplasmosis, 102 NSCLC) were retrospectively identified 

from the University of Iowa. Cases were matched between Histoplasmosis and NSCLC based on subject: 

(1) sex, (2) age within ± 3-years, and (3) self-reported smoking history. As pack-years were significantly 

different between groups and the accurate collection of pack-year information is difficult in long-term 
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smokers, smoking history was split into three categories (1) never smokers, (2)  < 30 pack-year history – 

not smoking eligible for low-dose CT screening, and (3) ≥ 30 pack-year history – smoking eligible for 

low-dose CT screening.  This resulted in 71 unique subjects (31 histoplasmosis, 40 NSCLC) and 94 total 

matches (some subjects matched to more than one other subject). Table 6.1 indicates demographical 

variables for the matched cohort. No statistical demographic difference was found between diagnosis 

groups and nodule size was not significant (p = 0.40).  

Table 6.1: Demographics of matched cohort along with p-value comparison between histoplasmosis and NSCLC. 

 Histoplasmosis NSCLC p 

N 31 40 - 

Sex 23F:8M 23F:17M 0.14 

Age 

Mean Range 

57 years ± 8, 

46-76 years 

59 years ± 7.6, 

47-79 years 
0.12 

BMI 

Mean, Range 

30.7 ± 8.2, 

19.1-51.8 

27.9 ± 8.2, 

16.0-44.5 
0.11 

Pack-years 

Mean Range 

14.5 ± 17.8, 

0-66 

26.5 ± 26.8, 

0-92 
0.03 

Smoke 

Tertiary* 

Non 10 7 

0.10 NSE 16 18 

SE 5 15 

Location 

RUL 9 20 

0.051 

RML 4 2 

RLL 11 4 

LUL 5 10 

LLL 2 4 

Nodule Diameter 

Mean, Range 

11.4mm ± 3.5 

4.7-20.6mm 

12.1mm ± 3.3 

4.4-17.1mm 
0.40 

Definition of abbreviations: NSCLC – non-small cell lung cancer; N – number of subjects; F – female; M – male; BMI – 

body mass index; Non – never smoker; NSE – less than 30 pack-year history; SE – 30 or greater pack-year history; RUL 

– right upper lobe; RML – right middle lobe; RLL – right lower lobe; LUL – left upper lobe; LLL – left lower lobe 
 

6.3.2. IO Feature Set Selection Illustrates Features from the Parenchyma are Informative of 

Disease 

Following a rule of thumb of one feature per five training subjects, a maximum of 14 features was 

allowed for development of the candidate tools. The four parenchymal inclusion QIC-RATE tools used 

between 9 and 12 features while the Nodule tool used 10 (Table 6.2). Neither RECIST diameter nor 

nodule volume was selected in any candidate tools but the water-equivalent diameter was selected in the 

Nodule and Margin. No single feature was selected in all five candidate tools. Parenchymal ring Long 

Run High Gray-Level Emphasis was selected in all candidates with perinodular signal inclusion. There 

was little overlap in the selected nodule vs parenchyma features (i.e. nodular Low Gray-Level Zone 

Emphasis and parenchymal ring Low Gray-Level Zone Emphasis were not both selected in the same tool) 

indicating that the signals detected from these regions are unique. In all, 42 of the total 51 features 
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selected in at least one of the candidate tools were textural with most candidate translational (included in 

multiple tools) being run-length or size-zone features.  

Table 6.2: Selected QICs from among the five candidate QIC-RATE tools. 

   QIC Name Nodule Margin Immediate Extended Extended+ 

N
o

d
u

le
 

BS Mean Sphere Difference 4     

SH Sphericity 1    10 

SZ H2O Equivalent Diameter 3 8    

IH 25th HU Percentile 9  7 7  

LTEM 
Mean-5 6     

Kurtosis-16 8  10  3 

NGTD Strength 10  3 9 8 

GLRL 
Gray-Level Variance  1 1   

High Gray-Level Run Emphasis 5 4 11 5  

GLZS 

Gray-Level Nonuniformity 2    7 

Low Gray-Level Zone Emphasis  2    

Small Zone Emphasis 7     

Zone-Size Non-uniformity  3 2   

Small Zone High Gray-Level Emphasis  7 8   

P
a

re
n

ch
y

m
a

 

IH Full-Width-at-Half-Maximum     5 

LTEM Mean-1  11 9   

NGTD 
Busyness    1 9 

Contrast  9 4 6 2 

GLRL 

Gray-Level Non-uniformity  12 6 8 6 

Low Gray-Level Run Emphasis    4  

Long Run High Gray-Level Emphasis  5 5 3 1 

GLZS 
Low Gray-Level Zone Emphasis    2  

Small Zone High-Gray Level Emphasis  6   4 

Total  10 12 11 9 10 

Definition of abbreviations: QIC – quantitative imaging characteristic; BS – border sphere comparison; SH – shape; Sz – 

size; IH – intensity histogram; LTEM – Law’s texture energy measure; NGTD – neighborhood gray-tone difference; 

GLRL – gray-level run length; GLSZ – gray-level size zone  
 

6.3.3. Tool Assessment Performance Improved with inclusion of Surrounding Parenchyma 

 The five candidate tools were run through feature-set selection and development on ENN using 

LOO; Figure 6.1 demonstrates the range of predictions from the five candidate tools. The performance 

measures are summarized in Table 6.3. Pairwise Delong assessment showed no statistical difference 

between ROC curves (p-value between 0.12-0.99).  Of the candidate tools, the Extended+ (incorporating 

parenchymal ring at 100% diameter) performed the best using LOO (AUC-ROC = 0.89) utilizing ten 

features, 4 from the nodule and 6 from the perinodular parenchyma. The top ranked feature was the 

parenchymal Long Run High Gray-Level Emphasis. Applying the Youden threshold, the Extended+ tool 

achieved 84% specificity and 83% sensitivity. Applying the 90%-sensitivity threshold (0.55) to the 

Extended+ tool achieved a specificity of 61%.  
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Table 6.3: Performance measures of candidate QIC-RATE tools applied using leave-one-subject out cross validation. 
 

AUC-ROC Youden Specificity Sensitivity 

Nodule 0.78 0.36 0.61 0.90 

Margin 0.86 0.46 0.77 0.85 

Immediate 0.79 0.38 0.65 0.80 

Extended 0.88 0.41 0.81 0.88 

Extended+ 0.89 0.60 0.84 0.83 

Definition of abbreviations: N – number of subjects; AUC-ROC – area-under-curve of receiver-operator characteristic; 

90%-sens – threshold that achieves 90% sensitivity see Appendix A.1.3 

 

 

Figure 6.1: Overlay histogram visualization of five candidate QIC-RATE tools applied to the Histoplasmosis-NSCLC 

cohort. Solid lines indicate Youden threshold, dashed lines indicate threshold for 90% sensitivity.  
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6.3.4. Observer Categorical and Continuous Quantitative Assessments Demonstrate Variation 

Between Readers 

Readers agreed on the categorical risk (low, medium or high) in 23 of the 71 cases; of those, 5 

were scored low, 3 medium, and 15 high (Figure 6.2).  All agreed-upon low-risk scored nodules were 

benign and all agreed upon high-risk nodules were NSCLC.  This indicates that for 38% of the NSCLC 

cases there was high confidence in lung cancer classification among all observers and for 16% of the 

histoplasmosis cases there was high confidence in benign classification among all observers. Categorical 

assessment agreement was an average of 0.49 in weighted Cohen Kappa for all readers. The 

pulmonologists had the highest level of agreement between them (0.62) and the radiologists had the 

lowest level of agreement (0.36), however, some of the ‘disagreement’ could be the due to the risk-

aversity of readers (i.e. one radiologist decided on an ‘extreme’ category – low/high while the other chose 

medium). In fact, categorical percentage of agreement hovered at random chance 32.4% –given there are 

three categories there is the unbiased draw likelihood that any rater will agree with another 33% of the 

time. On the quantitative assessment of risk, the ICC was 0.52 between all four raters indicating a fair 

level of agreement between raters. While differences existed between readers, assessment of the intra-

reader differences in categorical assessments showed readers were 100% repeatable in category 

assignment. Continuous quantitative assessment was slightly less repeatable with a range in difference 

between <0.01 and 0.13.  

 

Figure 6.2: Heatmap of categorical agreement among readers. Colors: Blue - low risk; Purple - medium risk; Red - high 

risk.  
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6.3.5. Observer Continuous Quantitative Assessment Demonstrates Benefit of Human Observer, 

Potential for Simple Self-trained Tool  

The observers’ continuous quantitative risk scores (between 0-1) were assessed for direct 

comparison to the QIC-RATE tool. Observers ranged in AUC-roc = 0.65-0.80 (power 0.54-0.99) and 

Youden-threshold based sensitivity and specificity between 0.65-0.94 and 0.31-0.88 respectively (Table 

6.5, Figure 6.3).  Youden-threshold based sensitivity indicates the potential aid a simple ‘self-training’ 

tool could be assistive with compared to the categorical threshold. When compared to the average 

performance across all four observer readings, the QIC-RATE Extended+ tool had comparable sensitivity 

with an improved specificity.   

Table 6.4: Performance Measures of quantitative (analog) risk assessment from the four human readers. 

 

Definition of abbreviations: AUC-ROC – area-under-curve of receiver-operator characteristic; NA – not applicable 

 

 

Figure 6.3: Receiver-operator characteristic curves for the four reader’s continuous risk scores.  

 
AUC-ROC Youden Specificity Sensitivity 

Reader 1 0.76 0.63 0.62 0.88 

Reader 2 0.80 0.67 0.73 0.79 

Reader 3 0.74 0.74 0.88 0.65 

Reader 4 0.65 0.75 0.31 0.94 

Average Reader 0.74 NA 0.63 0.82 

QIC-RATE Extended+ 0.89 0.61 0.84 0.83 
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6.4. Discussion 

In this chapter we have demonstrated the transferability of the QIC-RATE pipeline to a cohort of 

retrospectively collected clinical CT scans. This study was a proof of concept applying machine learning 

techniques developed and tuned on a large research cohort with malignant/benign distinction, to the 

problem of Histoplasmosis/NSCLC distinction; with consideration of the impact from surrounding 

perinodular region’s signal. It further compared predictive results from the model to observers with 

significant experience in distinction of Histoplasmosis from other pulmonary nodule developing diseases. 

It confirmed the model developed on a small cohort and utilizing only CT extracted features, could 

achieve predictive performance that is comparable to a human reader.  

 Previously we have shown in Chapter 5 that incorporation of perinodular signal significantly 

improves discriminatory ability on a large cohort of qCT scans with less variation in acquisition protocol. 

In the current chapter, the incorporation of perinodular signal also improved the performance at a level 

that approached significance between the Nodule and Extended/Extended+ tools. In the best performing 

tool, Extended+, six of the features were selected from the perinodular region including five texture and 

one intensity histogram measure. Several of those features – Contrast, Gray-Level Non-uniformity in 

Runs, Long Run High Gray-Level Emphasis – were selected in all four QIC-RATE incorporating 

perinodular QICs, indicating this textural signal is beneficial to the classification problem regardless of 

the size-standardization amount. Several features were selected in only the Extended+ QIC-RATE, 

including the perinodular Small Zone High Gray-level Emphasis and Full-Width-at-Half-Maximum, 

indicating the size-standardization for these features highlights their usefulness.   

It is likely that increased performance could be achieved with this method (similar to Chapter 5) 

with CT protocol standardization. For example, in the retrospective clinical cases used in this 

investigation, subjects were not coached to a particular lung volume and differences in lung inflation 

likely reduce signal integrity of the perinodular features extracted107. Also, a large proportion (66/71) 

subjects in this cohort had iodine contrast-enhanced scans which can affect the extraction of derived 

measures108. As slice thickness was much larger in this cohort (mean = 3.30mm), we adapted the feature 

extraction pipeline for 2D textural features extracted from the slices containing nodule and perinodular 

region. It has been previously shown in the classification of lung cancer brain metastases that 3D textural 

features are more descriptive than 2D features5. The studies used here were acquired between October 

2007 and December 2014; with increased technological advances making their way into the clinical 

setting, such as faster-acquisition LDCT and improved reconstruction algorithms, there will be 

improvements over time with the z-plane thickness which would make 3D features a more powerful 

option.  
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 While the observers did differ in their categorical and continuous risk scores on a per nodule 

basis, they did perform well in distinguishing histoplasmosis to non-small cell lung cancer and their 

categorical risk scores were 100% repeatable on the intra-reader analysis. The experience level of these 

individuals is high in the given task while the QIC-RATE tool was built only using the looped LOO 

training cases (subjects = 70, per run) the number of true histoplasmosis and NSCLC cases the observers 

have been trained on is orders of magnitude larger.  We did see potential improvement in observers when 

using a simple linear discriminant (Youden threshold of risk score) implying that it may improve observer 

(intra) repeatability and consistency/accuracy to use a continuous risk that has been tuned to their own 

level of ‘risk percentage application’ as opposed to categorical assessment.   

This study contained limitations. First, it was a retrospective study collected from a clinical 

cohort, leading to a diversity in scanning protocols – including contrast enhancement-  and selection 

biases. Second, the sample size collected was small (N = 71) and due to case-control matching study 

design, the clinical proportions of the two disease states were not maintained. In true clinical practice, it is 

unknown the actual rate of pulmonary histoplasmosis as often patients with pulmonary histoplasmosis 

nodules are not symptomatic and likely many are not definitively diagnosed as histoplasmosis. The 

histoplasmosis cases in this study were histopathologically diagnosed, such that only cases clinically 

warranting invasive procedure were included. In addition, the presentation of data with only a two-class 

outcome (histoplasmosis versus NSCLC) does not reflect clinical practice, in which multiple benign and 

malignant categories exist. Interpretation of the QIC-RATE and human readers performance should 

acknowledge the targeted approach of this study and not infer clinical practice performance from these 

results. Additionally, the small cohort size limits both the number of features we allowed each QIC-

RATE tool to implement in ENN and increases the potential effects of scanning variability and inter-

subject biological variance irrelated to pulmonary nodule pathology. 

In this chapter we have demonstrated the transferability of the QIC-RATE pipeline to clinical-quality 

scans and maintained improved performance with size-standardized perinodular signal inclusion 

compared to utilization of features only from the nodule. We have further compared the developed tool to 

four blinded expert readers, demonstrating while there is room for improvement in the risk prediction 

accuracy of the Extended+ tool, it performs on par with clinician assessment. The next chapter, Chapter 

7 – Application of QIC-RATE to Whole Lung Measures, investigates the transferability of the QIC-

RATE pipeline to features extracted from the lung, lobe, and airways with comparison to a statistical 

multivariate model framework. 
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CHAPTER 7: APPLICATION OF QIC-RATE TO GLOBAL LUNG MEASURES 

7.1. Introduction 

Chronic obstructive pulmonary disease (COPD) is characterized by obstructive lung function. 

Evaluated with medical imaging, COPD is heterogenous with varying presentations of structural changes 

in the lung parenchyma and airways. COPD is a risk factor for lung cancer development, independent of 

smoking history41,109. Prior studies have shown clinical (pulmonary function testing – PFT) and 

qualitative assessment links between COPD features and risk of lung cancer41,110,111. There has been 

limited published research into the overlap of the COPD-related qCT measures and risk of lung cancer in 

subjects with pulmonary nodules, with most studies including subjects with and without nodule 

presence41,112-116. Extent of emphysema in the lungs has been shown to be a positive predictor of lung 

cancer112-114,116,117, qCT airway measures have also been assessed for potential predictive benefit however 

no significant discriminatory ability has been demonstrated114,117. However, many of these studies have 

not focused on controls with nodules – those individuals at a heightened risk of lung cancer by the sheer 

fact they have a pulmonary tumor.  

This chapter investigates the utility of objectively and automatically obtained qCT metrics in 

predicting subjects with lung cancer on a cohort of scans all of which include pulmonary nodules ≥ 4mm. 

Here, the nodule was not extracted or segmented from the scans prior to qCT feature extraction. The 

purpose of this was to assess if pertinent qCT features could be obtained without pre-processing by 

human readers. Ultimately for a risk assessment pipeline to be most clinically helpful, there should be the 

requirement for as little human effort as possible. Radiologists have an already heavy workflow and 

therefore are unlikely to want to add additional (potentially helpful) assessments if it requires more time 

and effort. Here, the developed QIC-RATE system was compared to the least absolute shrinkage and 

selection operator (LASSO) regression analysis for feature set selection and classification performance on 

qCT features and demographical/clinical characteristics.  

7.2. Materials and Methods 

7.2.1. Study Population 

The study cohort of was comprised of subjects retrospectively collected from three prospective 

research studies (COPDGene, INAHLE, and NLST) and included 327 individuals with pulmonary 

nodules (86 with primary lung cancer diagnosis) who underwent CT prior to diagnosis (see Chapter 2 for 

additional information)26,40,41. The subjects were sectioned into a training cohort (n=278) and a validation 

cohort (n=49), using class-persevering random selection. Demographic and basic clinical features were 
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obtained from parent studies (Table 7.1). Inspiratory CT data was collected from multiple institutions 

following a standardized protocol.  

Table 7.1: Subject demographics from the Development/Testing and Validation cohort. 

  Malignant Benign p 

Development/Testing 

Subjects 71 207 - 

Age (mean±SD) 64.3±10.1 62.2±8.3 0.11 

Sex (Female: Male) 41:30 101:106 0.53 

Smoking History (Yes: No) 63:8 204:3 0.55 

Cancer History (Yes: No) 12:59 9:198 0.35 

Family Cancer History (Yes: No) 37:34 85:122 0.79 

Family Lung Cancer History 

(Yes: No) 
18:53 68:139 0.59 

Cessation Time (mean±SD) 3.85±9.29 4.5±8.04 0.31 

Diameter, mm (mean±SD) 14.7±8.3 9.11±5 0.84 

Gold Stage 

0 34 78 

0.20 

1 8 44 

2 18 42 

3 7 32 

4 4 10 

FVC (mean±SD) 130.1±213.6 126.7±234.7 0.96 

FEV1 (mean±SD) 80.2±22.1 74.2±18.5 0.30 

FEV1/FVC (mean±SD) 1.05±0.54 1.24±0.67 0.33 

Validation 

Subjects 15 34 - 

Age (mean±SD) 60.36±7.65 61.7 ± 9.7 0.79 

Sex (Female: Male) 10:5 21:13 0.15 

Smoking History (Yes: No) 14:1 33:1 0.32 

Cancer History (Yes: No) 3:12 4:30 0.46 

Family Cancer History (Yes: No) 9:6 16:18 0.58 

Family Lung Cancer History 

(Yes: No) 
6:9 12:22 0.5 

Cessation Time (mean±SD) 2.13±5.25 3.57±6.1 0.74 

Diameter, mm (mean±SD) 15.13±8.1 10.4±6.3 0.29 

Gold Stage 

0 10 14 

0.15 

1 2 6 

2 2 9 

3 0 5 

4 1 0 

FVC (mean±SD) 75.7±24.9 71.1±24.9 0.21 

FEV1 (mean±SD) 84.5±19.5 82.3±19.2 0.32 

FEV1/FVC (mean±SD) 1.22±0.45 1.3±0.53 0.55 

Definition of abbreviations – SD – standard deviation; FVC – forced vital capacity; FEV1 – forced expiratory volume at 1 

second. 

7.2.2.  Feature Groups 

Two feature groups were collected and analyzed for predictive capabilities: Clinical and 

Imaging/QICs. Clinical features required input from a human based on recollection of the patient, clinical 

testing, or image reader assessment. Imaging qCT features were automatically extracted from the CT 

datasets using Apollo software suite (Vida Diagnostics, Coralville, IA).  
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7.2.2.1. Clinical features 

A subset of this study’s cohort was previously used to investigate the utility and consistency of 

post-imaging mathematical prediction models for the differentiation between malignant and benign lung 

nodules (Chapter 3).The clinical predictive values collected were included as clinical features. Seven 

measures of subject-provided historical information, 1 measures of radiologist reported information, and 4 

PFT.  

7.2.2.2. Extraction of Quantitative Imaging Characteristics 

In total, 183 qCT measures were available for model development. QCT characteristics of the 

parenchyma (whole lung and lobar) and airways (segmental branches) were extracted. These included 

measures of image intensity from the lung tissue (mean, standard deviation, skewness, kurtosis, etc.), 

airway characteristics (wall thickness, lumen areas, pi10, etc.), volume characteristics, and low-

attenuation area percentiles. For this study, all available qCT measures from the Apollo reports were used. 

The coefficient of variation (CV) among lobes and airway paths of the features was calculated using the 

‘raster’ package in R70. 

7.2.3. Application of Statistical and Machine Learning Techniques 

Model and feature performance were tested using methods described in the Appendix A 

including AUC-ROC (Delong) and Youden J statistic. The models were developed using two feature 

pools, qCT (imaging features only) and qCT+Clinical (qCT features alongside the clinical features).  

7.2.3.1. Univariate Analysis 

Univariate statistical assessment was performed with associations to diameter assessed. Logistic 

regression was utilized to assess the association between imaging parameters and malignancy status. 

Estimated effects of predictors are reported with odds ratios (OR) scaled to one standard deviation 

change. Imaging parameter performance was evaluated using the c-statistic (AUC-ROC). All statistical 

testing was two-sided and assessed for significance at the 5% level using SAS v9.4 (SAS Institute, Cary, 

NC). 

7.2.3.2. Multivariate Model Development 

Using the training dataset, LASSO models were applied to identify prognostic predictors of 

nodule malignancy status. The LASSO penalty parameter model performance metrics were derived from 

100 iterations of 10-fold cross-validation. Observed and optimism-adjusted AUC, calibration plots, and 

confusion matrices are reported. The model derived in the building phase was applied to the testing 
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dataset. The performance of the model was assessed by AUC-ROC, reported is mean optimize adjusted 

AUC-ROC.  

7.2.3.3. QIC-RATE Model Application 

The QIC-RATE pipeline described in Chapter 5 was implemented with the slight modifications. 

Image segmentation and feature extraction was implemented using the Apollo software. Highly correlated 

features are reduced to a single representative feature through k-medoid clustering, the reduced feature set 

undergoes the IO set selection method to obtain a ranking of informative predictors, and the selected 

feature set is used to train ENN. Here we apply the techniques developed for feature set reduction, 

selection, and classification to the training set on feature groups qCT and qCT+Clinical. The final trained 

models (development) were applied to the testing cohort.  

7.3. Results 

7.3.1. Statistical and Machine Learning Techniques Results 

The set selection methods (Multivariate and IO) were applied to the feature pools qCT and 

qCT+Clinical, Table 7.2 indicates the features selected in each of the models. In total, 32 features were 

selected as predictors in a model. There was minimal overlap between the features selected by 

Multivariate and IO methods (2 features overlap – lobe percent above 0 HU and diameter). Table 7.3 

shows the performance of the feature set selection methods (Multivariate, IO) and classification methods 

(LASSO, ENN). The univariate analysis showed the top three predictors to be intensity histogram based 

of the lobe with the nodule (histstandard_deviation, skewness, kurtosis) with training AUC-ROC between 

0.68 and 0.71 (p < 0.01). Controlling for nodule size (diameter) and COPD Gold Stage did not affect the 

training AUC-ROC by more than 0.01 on any univariate model. 

7.3.1.1. Multivariate Analysis selects Diameter and qCT features for highest training performance 

The multivariate analysis yielded a model that incorporated QICs from the airway tree, whole 

lung, and lobe. Selecting only automatically extracted imaging features for model development included 7 

measures, with a training AUC-ROC of 0.75 and a testing AUC-ROC of 0.56 – indicating overtraining on 

the training dataset. Allowing the model to select clinically ascribed features from radiologist or subject 

input produced a model included diameter and four qCT features, with a training AUC-ROC of 0.77 and 

testing AUC-ROC of 0.62; the improvement in validation AUC-ROC could point to size bias within our 

cohort. A model developed using only clinical/demographical features included only the diameter, with a 

training AUC-ROC of 0.70 and validation AUC-ROC of 0.64.  
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Table 7.2: Selected features for each of the developed models with odds ratio.  

Category- Location Feature OR M-I IO-I B-CI M-CI IO-CI M-C 

Clinical Diameter -   X X X X 

Histogram-Lung standard_deviation 2.52 X  X X   

totalVolcm3 0.73  X   X  

Histogram-Lobe percent_above_0 1.47 X X   X  

skewness 0.49  X   X  

histmean 1.67  X   X  

percentBelow910 0.75  X     

Airway-Lung stdDevMaxWallThickness 1.06 X   X   

stdDevAvgWallThickness 0.67 X   X   

pi10_leq 1.51  X   X  

Airway-Lobe avgWallAreaFraction 0.61  X   X  

Airway-AP avgWallAreaFraction 1.05  X   X  

avgMinWallThickness 0.79  X   X  

avgMinorInnerDiam 1.23  X   X  

stdDevMaxWallThickness 0.52 X   X   

stdDevAvgWallThickness 1.16 X      

CV-Lobe stdDevMajorOuterDiam 0.83 X      

avgInnerPerimeter 0.94  X   X  

stdDevAvgWallThickness 0.98  X   X  

stdDevMinWallThickness 0.82  X     

avgInnerEquivalentCircleDiam 0.94  X   X  

CV-AP avgMaxWallThickness 1.29  X   X  

avgOuterArea 0.93  X   X  

avgMinorOuterDiam 1.09  X   X  

 Count 7 17 2 5 16 1 
Definition of abbreviations: OR – odds ratio; CV – coefficient of variation; B-CI – bi-variate model qCT+clinical; M-I – 

multivariate selection qCT; IO-I – information optimization selection qCT; M-CI – multivariate selection qCT+clinical; 

IO-CI – information optimization selection qCT+clinical; M-C – multivariate selection clinical 

 

Table 7.3: Performance results from the developed models using QICs and/or clinical characteristics. 

Feature Groups Selection Model Training AUC-ROC Testing AUC-ROC 

qCT  Multivariate LASSO 0.75 0.56 

Multivariate ENN 0.81 0.60 

 IO ENN 0.74 0.74 

qCT + Clinical Multivariate LASSO 0.77 0.62 

Multivariate ENN 0.81 0.62 

IO ENN 0.77 0.79 

Clinical Multivariate LASSO 0.70 0.64 
Definition of abbreviations: AUC-ROC – area-under-curve of receiver-operator characteristic; qCT – quantitative 

computed tomography; LASSO - least absolute shrinkage and selection operator regression analysis; ENN – ensemble of 

artificial neural networks; IO – information optimization 

7.3.1.2. ENN Classification Schema Improves Testing Performance of Multivariate Selected Imaging 

Features 

The features selected through multivariate model development were used to train ENN models. 

The resulting training performance was similar to the multivariate model training performance, however 

the resulting testing performance from the ENN model was higher (0.60) for the qCT-only features model 
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compared to the multivariate testing (0.56). This indicates the ENN classification would be potentially 

more useful on new cases.  

7.3.1.3. Combination Medoids-IO and ENN Less Likely to Over-train than Multivariate Approach 

While the multivariate selection method for features obtained higher training AUCs for both 

Feature Pools (qCT+Clinical and qCT-only), the testing AUCs for these models implied potential 

overfitting, particularly with the qCT-only features. This overfitting persisted in the ENN trained with the 

Multivariate selected features indicating the overfitting is occurring during feature set selection. In 

contrast, the Medoids-IO selection followed by ENN model development obtained testing AUCs that 

more consistent with the training AUCs. Delong’s analysis of the testing AUCs demonstrated that the 

qCT+Clinical Medoids-IO selected ENN model was significantly better on new cases than both the 

Multivariate selected ENN models. The qCT-only IO selected ENN model was not statistically better but 

was still higher in AUC.  

7.3.2. Quantitative Imaging Feature Importance  

7.3.2.1. Nodule Diameter only Clinical Feature selected by both Multivariate and IO 

The nodule diameter, measured as the RECIST diameter, was the only clinical characteristic 

selected by the models. This could be due to the size bias that is seen in the cohort of pulmonary nodules 

– with cancerous nodules tending on average to be larger than their benign counterparts. A logistic 

regression model using diameter achieved a training AUC-ROC of 0.70 and validation AUC-ROC of 

0.64. Diameter was selected in both Multivariate and IO selection methods and in the bi-variate model. 

The addition of clinical characteristics did not significantly improve the performance of either 

Multivariate or IO set selection in ENN development (p > 0.05). The addition of clinical characteristics in 

IO set selection did significantly improve the testing AUC-ROC over Multivariate set selection without 

clinical features (p = 0.02).  

7.3.2.2. K-medoids Clustering Interrogates Feature Correlations 

For the full training dataset, the optimal k produced 37 clusters. Example clustering of QICs and 

clinical features is shown in Figure 7.1. Across 10-fold kCV, clustering of the QICs using k-medoids 

method showed that 21 were stable (medoids in all 10 folds) and an additional 6 (27 total) which were 

semi-stable (medoids in at least 8 of the 10 folds). Of note, the lobe standard_deviation QIC which was 

selected as the bi-variate and in both the multivariate models was not selected as a medoid in any of the 

10-folds; instead it was either a member of the cluster with representative lobe mean intensity (8 folds) or 
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lobe skewness (2 folds). As the IO feature selection is performed only on medoids, this feature was not 

available for selection using the IO method.  

 

Figure 7.1: Example of clustering arrangement for select medoid features (bolded). Clusters are color coded. Lines 

indicate strength of correlation between features within a cluster. The size of the feature point indicates the information 

theory metric (larger circle means the feature shares more information with diagnosis). Definition of abbreviations: CV – 

coefficient of variation 

7.3.2.3. Multivariate and IO select vastly different QIC features 

Comparing the features selected by the two methods, only nodule diameter and the lobe percent 

above 0 HU were common (Table 7.2). This is likely largely due to the feature-set reduction by k-

medoids performed prior to IO-set selection. Of the features selected by the multivariate model, only two 

(diameter and lobe percent above 0 HU) were selected as a medoid during 10-fold kCV k-medoids 

clustering. As such, none of the remaining multivariate selected features were available for IO-set 

selection. The IO method selected more CV features than the Multivariate selection method which only 

selected the CV of the Standard Deviation of the Major Outer Diameter using the qCT feature pool. The 

selected CV features were predominately from the airways.  
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7.4. Discussion 

This study has demonstrated the potential richness in extra-nodular, automatically extracted 

imaging-derived features for the distinction between subjects with malignant and benign pulmonary 

nodules. It has highlighted the utility of more advanced methods of qCT feature selection for less 

overtraining. Here, we extracted a large number of features as an exploratory manner instead of selecting 

specific features as has predominately been reported previously. As such we have found that the QIC-

RATE system with IO was advantageous for the exploratory manner of feature selection.  

Prior works with qCT have primarily focused on the associations with lung cancer, irrespective of 

pulmonary nodule presence. These works have reported mixed results in the benefit of qCT for lung 

cancer risk assessment. Studies by Chubachi et al. and Gagnet et al. indicated that increased low 

attenuation areas percentage, indicative of CT characterized emphysema, were higher in subjects who 

developed lung cancer112,113. Studies by Gierada et al. and Wille et al. did not find statistically significant 

differences but indicated that emphysema was more frequently seen and at a higher grade in subjects with 

lung cancer114,115. Bae et al. investigated whole lung and lobar qCT emphysema ratios, finding the odds of 

lung cancer increased in lobes with more severe emphysema116. However, work from Wilson, Maldonado, 

and Johannessen showed no statistical evidence in quantitative lung parenchyma and/or airway measures 

and risk of lung cancer110,111,117. Schwartz et al found in multivariate modeling only the expiratory qCT 

measure -856 HU and PFT characteristics were independent predictors of lung cancer risk41.  

It was surprising that diameter was the only clinical features selected, particularly as the features 

included have been utilized in previously published lung cancer prediction models. However, with early 

lung nodule detection via CT based lung cancer screening size bias between malignant and benign 

nodules is expected to decrease (compared to incidentally discovered nodules); this could lead to the other 

contributing demographical and clinical factors having more importance. Also, the increased use of lung 

cancer screening and the associated mechanisms for structured reporting of patient data could 

standardized these factors further, allowing for potentially more useful information than is currently 

gathered.  

The limitations of this study included the retrospective collection, with a focus only on solid 

pulmonary nodules. The cohort used in this study has a size bias between malignant and benign classes, 

and the nodule was not excluded (segmented) from the analysis. However, the difference between the 

average malignant nodule diameter (mean 14.7mm) and benign nodule diameter (mean 9.11mm) is 

considered very small when placed in the context of whole lung structure assessment. We only included 

inspiratory scans in the analysis, there are known expiratory scan measures (% below -856) which could 

be further assistive in the differentiation between malignant and benign cases. In this chapter we just 

investigated automated qCT lung features, taking into consideration the lobe location of lung tumor, 
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extracted using a proprietary software suite. Nodule volumetric segmentation can be challenging and has 

the potential to effect nodule specific feature extraction. Also, from a clinical workflow standpoint, a fully 

automated tool which does not require human interaction for nodule identification and segmentation 

would be advantageous.  

This chapter concludes the dissertation work on pulmonary nodules which has spanned from 

previously published MPMs to image feature analysis of features correlated with COPD. The following 

chapter, Chapter 8: Breast Tumor Classification, demonstrates the flexibility and adaptability of the 

developed QIC-RATE pipeline on breast mammography data.  
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CHAPTER 8: APPLICATION OF QIC-RATE TO BREAST TUMOR CLASSIFICATION 

This chapter is adapted from the paper, “Information Theory Optimization Based Feature Selection in 

Breast Mammography Lesion Classification”, published in Conf Proc IEEE Eng Med Biol Soc97.  

8.1. Introduction 

Cancer of the breast is the most common cancer diagnosis for women in the United States, 

resulting in an estimated 268,600 new cases and 41,760 deaths in 20194. Annual breast cancer screening 

with mammography is recommended by the American Cancer Society for average-risk women starting at 

the age of 40118. The Breast Imaging Reporting and Data System (BI-RADS) was developed to 

standardize screening reporting among medical professionals and communicate with patients about cancer 

risk35,119. This includes assessment categories assigned by a radiologist after interpretation of the 

mammogram, providing a malignancy risk classification for encountered tumors. While this provides a 

structured framework for medical professionals, there is still room for improvement in the diagnostic 

capabilities and reduction of false-positives False-positive tumors in screening can lead to unnecessary 

follow-up procedures and stresses on the patient. Several imaging-based tools have been developed for 

the diagnosis of breast cancer in mammography screening exams using radiomic features extracted from 

mammograms22,120-129. We propose to build upon previously published machine learning methods by 

controlled examination of the impact of incorporating radiomic features from the peritumoral space 

surrounding a breast mass. 

The goal of this chapter is an exploratory look at the utility of the described method beyond CT 

and beyond the lung and to compare the applied results to other published applications on a common 

cohort. Further, we provide insight into the relationship between quantitative features automatically 

extracted by the computer from the mammography data versus BI-RADS criterion as scored by 

radiologist. Through this study we demonstrate high diagnostic performance via a machine learning 

method which may provide a separate and augmentative risk assessment to that of radiologist 

interpretation with BI-RADS.  

8.2. Materials and Methods 

8.2.1. Study Cohorts 

This study used 1115 mammographic images from the publicly available Curated Breast Imaging 

Subset of Digital Database for Screening Mammography (CBIS-DDSM)43,130. The CBIS-DDSM provides 

pathological diagnosis data, BI-RADS scoring (subtlety, breast density, and assessment), and mass 

segmentations. Of the scans included in this study, 568 were malignant and 547 were benign leading to a 

relative balance between the classes. This cohort was split into a development set (N=1000; 507 
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malignant, 493 benign) and a validation set (N = 115; 61 malignant, 54 benign). For more complete 

details on the origin datasets, please see Chapter 2.  

8.2.2. Segmentation of Mass and Breast Parenchyma 

The CBIS-DDSM included mass segmentations for every subject in this study. The mass 

segmentations were performed using a local level set framework based on the Chan-Vese model131. For 

this study, the whole breast was segmented using a combination of region growing from the mass border 

and Otsu thresholding. To ensure breast segmentation was performed adequately, 10% of the cohort (115 

cases) were randomly selected and visually inspected by the author for completeness. For parenchyma 

ring feature extraction, the mass mask was grown using a binary image dilation to produce parenchyma 

quartile-rings: 25%, 50%, 75%, and 100% of the maximum diameter of the mass (Figure 8.1).  

8.2.3. Application of QIC-RATE 

The QIC-RATE tool developed in Chapter 5 was adapted for use on breast mammography images. The 

following methods indicate the adjustments made to the QIC-RATE pipeline, a visual summary is 

depicted in Figure 8.1.  

 

Figure 8.1: Overview of QIC-RATE tool development and validation pipeline for breast tumor application. Definition of 

abbreviations: IO – information optimization; AUC-ROC – area-under-curve of receiver-operator characteristic 

Five candidate tools were developed including differing amounts of breast ring-parenchymal 

inclusion: [1] Tumor (no parenchyma), [2] Margin (tumor + 25% ring), [3] Immediate (tumor + 50% 

ring), [4] Extended (tumor + 75% ring), and [5] Extended+ (tumor + 100% ring). Two-dimensional 

quantitative features were automatically extracted from the mass and breast parenchyma quartile areas. 

Features from the tumor and parenchyma rings were applied to the QIC-RATE development pipeline for 

reduction (k-medoids clustering), selection (information optimization), and classifier training (10-kCV of 

ensemble of neural networks). The highest performing candidate tool was applied to the blinded 
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validation cohort for estimation of tool performance on novel cases. Finally, the best performing QIC-

RATE tool was re-built to include BI-RADS categories to assess for the benefit of reader-determined 

features.  

8.2.4. Performance and Comparison 

Detailed information on the specific performance measures is included in the Appendix A. In 

brief, classification performance was assessed using AUC-ROC (Delong). The Youden’s J statistic was 

used as the calibrated threshold with measures of sensitivity and specificity; also applied was the custom-

threshold at training 90% sensitivity. McNemar’s tests was used for statistical difference between binary 

classifications. Statistical comparison of feature values was performed for continuous and categorical 

variables. Comparison to BI-RADS categorization was achieved by splitting the reader assessment 

variable into high-risk (≥ Category 4) and low-risk (< Category 4); a Category 4 BI-RADS assessment is 

defined as having a suspicious abnormality and recommended follow-up is biopsy.  

8.3. Results 

8.3.1. Peri-Tumoral Signal Increases Performance  

The highest performing candidate tool, the Margin QIC-RATE, was built using image features 

extracted from the tumor and the breast parenchyma within 25% of the tumor’s radius (Table 8.1). 

Through 10-fold kCV, it achieved an AUC-ROC of 0.967 on the development cohort. Inclusion of three 

BI-RADS features improved the AUC-ROC to 0.968.  

Table 8.1: Candidate QIC-RATE tool performance on breast mass classification in development dataset (10-fold kCV) 

QIC-RATE tool Features AUC-ROC Youden Sensitivity Specificity 

Tumor 25 0.873 0.54 0.82 0.76 

Margin 38 0.967 0.56 0.86 0.95 

Immediate 43 0.942 0.57 0.84 0.92 

Extended 63 0.943 0.57 0.84 0.92 

Extended+ 64 0.944 0.57 0.84 0.92 

BI-RADS 3 0.857 0.52 0.79 0.75 

Tumor & BI-RADS 28 0.925 0.63 0.84 0.90 

Margin & BI-RADS 41 0.968 0.55 0.94 0.98 

Definition of abbreviations: AUC-ROC – area-under-curve of receiver-operator characteristic; BI-RADS – Breast 

Imaging Reporting and Data System  

Over one-third (15/38) of the Margin QIC-RATE selected IOmax were extracted from the 

surrounding breast parenchyma. Five of these features were IH describing both high and low order 

qualities of the parenchyma brightness profile. The values of these histogram qualities tended to be lower 

in malignant masses than in benign. The maximum intensity and histogram entropy were both statistically 

significantly different (p< 0.01) between malignant and benign cohorts, potentially demonstrating 

increased calcification and heterogeneity in the immediately surrounding parenchyma. Ten image texture 



68 

features were selected (6 LTEM, 3 GLRL, 1 GLSZ), including the feature selected first – Variance of 

LTEM 1 (p < 0.01). This feature is calculated from the principle components of features extracted from 

parenchyma filtered for ripple-spot textures. Twenty of the selected features came from the tumor region 

of interest (10 LTEM, 8 IH, 8 GLRL, 5 GLSZ, 2 SzSp, 2 NGTM). The remaining three features were 

extracted from the tumor’s borders comparison with a circle of equal area. 

8.3.2. Transparency in Features Allows for Analysis of Trends 

Here we describe some trends in selected features between the tumor and the marginal 

parenchyma, for a complete list of the selected features see the supplementary material (Table 8.2). The 

spread of brightness values, described by the full-width-at-half-maximum of the intensity histogram, was 

statistically higher (p = 0.023) in malignant masses (0.014 ± 0.01) compared to benign masses (0.012 ± 

0.01). Similarly, the full-width-at-half-maximum was higher in the marginal parenchyma of malignant 

tumors (0.012 ± 0.01) than in the marginal parenchyma of benign tumors (0.011 ± 0.01), although this 

trend was not statistically significant (p = 0.128). The GRLR gray-level non-uniformity demonstrates 

malignant tumors and the marginal parenchyma surrounding them were more homogenous in runs than 

their benign counterparts. The GRLR low gray-level run emphasis shows malignant tumors and their 

marginal parenchyma had less regions of low intensity than their benign counterparts. 

8.3.3. QIC-RATE Tool Demonstrates Potential Increased Specificity Over BI-RADS  

We compared the Margin QIC-RATE tool to a retrospective application of the BI-RADS 

assessment categories (Table 8.3). Tumors with BI-RADS assessment categories below 4 were 

designated as BI-RADS-benign and categories 4-5 as BI-RADS-malignant. Compared to the BI-RADS 

classification, the Margin tool had much improved specificity (94.9% compared to 54.2% from BI-

RADS) with a slightly worse sensitivity (86.2% compared to 91.9% from BI-RADS). As QIC-RATE 

predicts risk assessment in the range of 0 and 1, we adjusted the risk threshold from 0.56 (Youden) to 

0.47 (90% training sensitivity) as described in A.1.3. In the validation cohort, the Margin QIC-RATE 

with 90%-sensitivity threshold would have correctly predicted 6 more malignant tumors at the cost 

incorrectly labeling 3 benign tumors, compared to the unadjusted Margin tool (Table 8.3). In the 

validation cohort, the Margin QIC-RATE achieving sensitivity of 86.9% and specificity of 75.9% 

compared to BI-RADS assessment (93.4% and 61.1%).  
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Table 8.2: List of features selected in the Margin QIC-RATE tool. 

# Feature Name 
Malignant Benign 

p 
Mean SD Mean SD 

1 Parenchyma Variance of LTEM 1 -2.06E-1 3.30E+0 2.12E-1 3.30E+0 <0.01 

2 Parenchyma Entropy 9.54E+0 8.56E-1 9.30E+0 8.56E-1 <0.01 

3 Parenchyma Run-Length Gray-Level Non-uniformity 6.43E-2 2.21E-2 6.45E-2 2.21E-2 0.29 

4 Tumor Kurtosis of LTEM 1 -1.19E-1 3.69E+0 1.22E-1 3.69E+0 0.39 

5 Tumor Intensity 25th Percentile 2.91E+4 9.92E+3 2.70E+4 9.92E+3 <0.01 

6 Tumor Intensity Mean 3.98E+4 8.40E+3 3.67E+4 8.40E+3 <0.01 

7 Tumor Maximum In-plane Radius 2.63E+1 6.36E+0 2.40E+1 6.36E+0 <0.01 

8 Tumor Circularity 5.39E+0 1.06E+0 5.25E+0 1.06E+0 0.14 

9 Tumor Large-Zone Emphasis 3.65E+4 1.10E+5 1.71E+4 1.10E+5 <0.01 

10 Tumor Zone-Percentage 1.37E-1 9.71E-2 1.56E-1 9.71E-2 <0.01 

11 Parenchyma Intensity Variance 4.21E+7 5.93E+7 4.14E+7 5.93E+7 0.52 

12 Tumor Variance of LTEM 1 -1.07E-1 3.69E+0 1.10E-1 3.69E+0 <0.01 

13 Tumor Strength Texture 2.82E-1 2.29E-1 3.26E-1 2.29E-1 <0.01 

14 Parenchyma Intensity Kurtosis 3.04E+0 2.06E+0 2.96E+0 2.06E+0 0.82 

15 Parenchyma Low Gray-Level Run-Length Emphasis 1.22E-2 1.65E-2 1.50E-2 1.65E-2 0.20 

16 Parenchyma Kurtosis of LTEM 1 7.85E-3 1.46E-1 -8.08E-3 1.46E-1 0.78 

17 Tumor Low Gray-Level Run-Length Emphasis 6.40E-3 4.91E-3 6.94E-3 4.91E-3 0.46 

18 Parenchyma Full-width-at-half-maximum 1.21E-2 8.35E-3 1.04E-2 8.35E-3 0.09 

19 Tumor Busyness Texture 3.93E+0 2.86E+0 3.29E+0 2.86E+0 <0.01 

20 Parenchyma Mean of LTEM 1 -5.14E-2 3.66E+0 5.29E-2 3.66E+0 <0.01 

21 Tumor Long-Run High Gray-Level Emphasis 2.95E+3 4.89E+3 2.15E+3 4.89E+3 <0.01 

22 Tumor Large-Zone Low Gray-Level Emphasis 1.63E+2 1.49E+3 1.35E+2 1.49E+3 <0.01 

23 Tumor Long-Run Low Gray-Level Emphasis 8.51E-2 8.83E-1 4.74E-2 8.83E-1 0.05 

24 Tumor Run-Length Gray-Level Non-uniformity 5.77E-2 1.57E-2 5.96E-2 1.57E-2 0.14 

25 Tumor Full-width-at-half-maximum 1.46E-2 8.32E-3 1.23E-2 8.32E-3 0.02 

26 Parenchyma Large-Zone High Gray-Level Emphasis 1.54E+7 4.06E+7 1.31E+7 4.06E+7 0.32 

27 Parenchyma High Gray-Level Run Emphasis 2.66E+2 1.05E+2 2.65E+2 1.05E+2 0.81 

28 Mean Absolute Border Comparison 4.91E+0 6.93E-1 4.66E+0 6.93E-1 <0.01 

29 Tumor Long-Run Emphasis 6.18E+0 6.60E+0 5.35E+0 6.60E+0 <0.01 

30 Parenchyma Intensity Maximum 4.85E+4 8.83E+3 4.66E+4 8.83E+3 <0.01 

31 Parenchyma Skewness of LTEM 1 3.43E-3 2.84E-1 -3.52E-3 2.84E-1 0.59 

32 Tumor Size-Zone Variance 2.96E-5 1.36E-4 4.12E-5 1.36E-4 <0.01 

33 Tumor Mean of LTEM 2.93E-3 1.16E-1 -3.01E-3 1.16E-1 <0.01 

34 Variance Absolute Border Comparison 6.92E-1 6.15E-1 6.89E-1 6.15E-1 0.58 

35 Parenchyma Skewness of LTEM 2 2.05E-1 3.72E+0 -2.11E-1 3.72E+0 0.77 

36 Parenchyma Mean of LTEM 2 6.82E-2 7.24E-1 -7.01E-2 7.24E-1 0.02 

37 Kurtosis Absolute Border Comparison 2.63E+0 6.78E-1 2.61E+0 6.78E-1 0.50 

38 Tumor Variance of LTEM 2 7.72E-3 5.19E-1 -7.94E-3 5.19E-1 0.90 

Definition of abbreviations: SD – standard deviation; LTEM – Law’s texture energy measures  

 

8.3.4. BI-RADS Features Not Highly Correlated with Automatically Extracted Features 

We can analyze the clustering of the feature set (including both QIC and BI-RADS features) to 

understand how computer-extracted features relate to those generated through radiologist assessment. 

Interestingly, the BI-RADs features were not clustered with any QICs (Figure 8.2). This indicates 

independent contribution of these features not directly captured through computer extracted radiomic 
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features. K-medoids analysis of the BI-RADS features showed similar trends regardless of parenchyma 

inclusions amount with all three being the medoid of their own cluster. The BI-RADS-subtlety cluster 

neighbored BI-RADS-breast density (range in separation). While breast density was more closely 

neighboring (separation: 0.625) a cluster composed of image texture features with medoid GLSZ zone 

percentage. The assessment cluster neighbored (separation: 0.795) a cluster with tumor and parenchyma 

IH entropy features. Subtlety was neighboring breast density (separation: 0.707).  
 

Table 8.3: Contingency tables for comparison of retrospective application of BI-RADS assessment category. 

   Binary Prediction  M B Sensitivity Specificity 

Development 

  

BI-RADS assessment 
Category ≥ 4 466 226 

91.9% 54.2% 
Category < 4 41 267 

Margin QIC-RATE 

Youden prediction  

Malignant 437 25 
86.2% 94.9% 

Benign 70 468 

Margin QIC-RATE 

90%-sens prediction  

Malignant 466 57 
91.9% 88.0% 

Benign 41 436 

Validation 

BI-RADS assessment 
Category ≥ 4 57 21 

93.4% 61.1% 
Category < 4 4 33 

Margin QIC-RATE 

Youden prediction  

Malignant 47 10 
77.0% 81.5% 

Benign 14 44 

Margin QIC-RATE 

90%-sens prediction  

Malignant 53 13 
86.9% 75.9% 

Benign 8 41 

Definition of abbreviations: M – true malignant; B – true benign; BI-RADS – Breast Imaging Reporting and Data 

System; 90%-sens – threshold derived from finding 90% sensitivity in development cohort (see A.1.3) 
 

8.3.5. Performance Comparison to Other Published Approaches 

The use of a publicly available dataset allows for comparison of different methods of 

classification in a more standardized way. As the CBIS-DDSM has been widely used for this 

classification task, the we are not able to provide a full comparison to all publicized applications. We 

have chosen instead to detail here recent applications to the CBIS-DDSM (Table 8.4), several systematic 

reviews are available that include applications that used a subset of the dataset132-134. Overall, our Margin 

QIC-RATE tool performed within the bounds set by AUC-ROC, accuracy, sensitivity, and specificity in 

those published articles. The best performing (based on AUC-ROC) of this group by Xie et al. was an 

approach using a combination of extreme learning machines and SVM of features (IH and texture) 

extracted from the tumor and parenchyma background regions123. 
 

Table 8.4: Recent publications incorporating the CBIS-DDSM cohort. 

Publication Cohort AUC-ROC Accuracy Sensitivity Specificity 

Xie123 330 0.966 96.0 96.3 94.3 

Abbas135 350 0.910 91.0 92.0 84.2 

Verma136 200 NR 93.5 97.8 90.7 

Jaffar137 1800 0.910 93.0 92.8 91.4 

Zhang124 681 NR 84.4 NR NR 
Definition of abbreviations: AUC-ROC – area-under-curve of receiver-operator characteristic; NR – not reported 
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Figure 8.2: Visualization of the k-medoids clustering on the BI-RADS features (Radiologist) and their neighbor clusters 

with select medoid features (bolded). Lines indicate strength of correlation between features within a cluster. The size of 

the feature point indicates the information theory metric (larger circle - feature shares more information with diagnosis). 

8.4. Discussion 

 We have demonstrated that the QIC-RATE pipeline, developed originally for the classification of 

lung nodules in CT, can be effectively applied with minor adjustments to other cancer classification 

problems. We have applied the developed QIC-RATE pipeline to a large, publicly available 

mammography dataset with confirmed mass diagnosis. In this chapter, we have demonstrated the 

potential benefit of including radiomic features extracted from the peri-tumoral breast tissue. Through a 

system of comparison tools, we have demonstrated a sufficient amount of tumor-standardized 

parenchyma to be 25% of the mass’s diameter. Furthermore, we have compared the radiomic-based 

classification to the BI-RADS recommendations, showing the potential strength in the QIC-RATE tool in 

terms of specificity. 

  Other studies have also shown value in quantitative assessment of the breast parenchyma22,123,125-

129. Zheng et al. utilized a lattice-based approach to extract features from regions of the breast 

parenchyma, with features (IH, GLRL, and co-occurrence) computed about the intersection points, the 

results of which were used in logistical regression classifier for breast cancer risk125. Sun et al. 

investigated features extracted from automated breast sub-regions segmented through 5-class fuzzy means 

clustering; the five sub-regions were ranked based on density value and fed into SVM classification 
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schema126. Li et al recently showed statistical improvement in a machine learning tool with the inclusion 

of normal contralateral breast parenchyma (skewness, Fourier power law beta)127. To the best of our 

knowledge this is the first study to standardize to the mass size the amount of surrounding breast 

parenchyma included. The tumors in this cohort varied in size from maximum-diameter 5mm to 67mm 

and breast size also varies among the population. Through this study we have examined the amount of 

surrounding parenchyma – by quartiles – and established that utilizing the signal from 25% of the tumor’s 

maximal diameter is sufficient to extract meaningful radiomic characteristics pertinent to the distinction 

between malignant and benign breast masses.  

We explored the potential clinical utility of employing the Margin QIC-RATE tool compared to 

BI-RADS classification. Using the Youden optimal threshold, QIC-RATE provided a higher specificity 

than using the BI-RADS assessment threshold of Category-4, however the sensitivity was lower. By 

adjusting the threshold to match the BI-RADS sensitivity in the development cohort improved the 

sensitivity in the validation cohort while still maintaining higher specificity than the BI-RADS. There is 

indication of some overtraining, shown by the lower performance of the QIC-RATE in the validation 

cohort. However, the maintained improvement in the validation cohort of both sensitivity and specificity 

over BI-RADS alone lends credence to the ability of a tool built solely on objective radiomic features to 

have a potential positive impact on clinical practice. 

This study was limited in scope to 2D mammography images, there is a greater potential value of 

this approach (increased features, volumetric features) in 3D mammography images (tomosynthesis), 

however no large publicly available dataset has been compiled. Radiomic features can be sensitive to 

segmentation quality variability, in particular those describing tumor shape and border. The current 

approach utilized existing tumor segmentations, automated breast tumor detection and segmentation 

systems exist which could eventually allow this process to be streamlined for assessment without user 

requirements. Recently, risk stratification models have been promoted by the American Cancer Society to 

determine a woman’s risk of breast cancer, and suggestions for increased screening (at 30-years of age) 

and increased used of other imaging modalities including MRI and ultrasound, at this time there are no 

large publicly available datasets with which to compare the utility of the described QIC-RATE approach 

on these methods. As the dataset was publicly available, some unknowns exist regarding data collection 

and processing; for example, as we saw in Chapter 6, variability often exists between readers and it is 

possible that the BI-RADS categories were collected from multiple readers. This could potentially 

influence linear correlation with automated features if the ‘reader consistency’ was low and could be a 

factor in why AUC-ROC was not improved with addition of BI-RADS features. Finally, BI-RADS does 

not fully capture all components of clinical risk that may be considered by a clinician in deciding the most 
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suitable follow-up for a patient, further studies in the observer-model performance are needed to address 

these questions.  

This chapter has highlighted the flexibility of the QIC-RATE pipeline and performance validation 

for inclusion of surrounding tissues in solid tumors beyond the lung. The next two chapters draw together 

the conclusions of this thesis (Chapter 10: Conclusions) and highlight potential areas of further growth 

(Chapter 9: Future Directions).  
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CHAPTER 9: FUTURE DIRECTIONS  

As the modularity of the developed approach has proven useful, there is no shortage of possible future 

directions and applications. The following sections briefly notes potential areas of growth for QIC-RATE 

beyond the completed dissertation work.  

9.1. Inclusion of Additional Imaging features 

 The developed method is neither tied to a number of features nor to a specific feature type – 

although the basis of the developed approaches presented in the thesis mainly focused on imaging 

characteristics. The science and engineering behind the QIC-RATE pipeline readily allows for the 

addition of expanded feature sets. New imaging-based features are being explored and developed for 

extraction in a multitude of applications, the addition of these features could highlight additional feature 

interaction and potentially increase information available for accurate diagnosis. Similarly, efforts are 

being made to standardize and ontologize imaging features for the comparison of different methods of 

calculating similar features (i.e. volumetric calculations based on pixel count or triangulation of 

surfaces)80  

9.2. The Multiclass Approach  

A natural next direction for the developed approach is the expansion from a binary class approach 

(malignant/benign, histoplasmosis/NSCLC) to an approach that delineates multiple classes 

simultaneously (adenocarcinoma/squamous cell carcinoma/histoplasmosis/tuberculosis/hamartoma). For 

this to be successful a large and protocol-controlled dataset is needed, with the increase in lung cancer 

screening and subsequent standardized follow-up on discovered nodules this is within reach of a large 

institution with a rigorous screening program.  

9.3. Deep Learning 

The arena of deep learning developed alongside this thesis work and has proven to be an efficient 

application for machine learning problems that traditional (non-deep) learning has encountered. The 

‘hands-off’ black box can be an efficient and robust way of solving some time-intensive and methodology 

intensive challenges in image processing such as image registration and segmentation138. We believe deep 

learning and the QIC-RATE have a natural compatibility that when combined, can highlight the skills of 

both approaches.  

 Specifically, deep learning could be used to ‘cut-out’ the human interaction entirely by providing 

the nodule identification and image segmentation elements139,140. As nodule identification and 

segmentation does not require knowledge of true diagnosis, deep learning could tap into the large cohorts 
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with nodules identified and segmented – such as the LIDC – to train a tumor detection and segmentation 

method. From the deep learning identified segmentations, QIC-RATE could be employed on a cohort 

with known diagnosis to extract imaging features, determine the reduced and ranked set, and train the 

ENN. Given a large enough dataset – which could be soon possible with lung cancer screening – it would 

be interesting to also include a convolutional neural network as a ‘second artificial reader’ or an element 

in the ENN; thereby investigating if deep learning is pulling out the same information as the curated 

features or new measure that have not been curated yet.  
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CHAPTER 10: CONCLUSIONS 

The results presented in this thesis support our hypothesis – quantitative imaging characteristics 

(QICs) extracted from spatially-linked and size-standardized regions of surrounding tissue can improve 

risk assessment performance over features extracted from only the tumor regions. Furthermore, we have 

met the goals to develop a flexible and robust pipeline for the extraction and selection of informative 

imaging-derived characteristics in medical imaging data. Using these characteristics, we have 

implemented a rigorous classifier development methodology which was validated both in training phase 

and through independent testing datasets.  

The need for advanced methods of lung nodule risk stratification, post-CT identification, was 

highlighted through the investigation of existing MPMs, demonstrating need for improvement in 

specificity beyond calibration (Chapter 3). The primary objective for the developed QIC-RATE pipeline 

was the improvement of risk stratification of CT identified pulmonary nodules through standardized 

QICs, in which we were able to demonstrate exceptional performance including a validation accuracy of 

98% (Chapters 4-5). A benefit of the developed system is the preservation of feature transparency 

throughout the reduction, selection, and classification process along with the ability to further explore the 

relationship of informative features. Further, the methodology was shown to be flexible to image and 

feature dimensionality as demonstrated in applications for breast tumor characterization (Chapter 8) and 

classification of histoplasmosis (Chapter 6). The methodology is adaptable to cohorts with heterogenous 

protocols; such as diverse CT acquisition protocols from retrospective clinical cases at UIHC (Chapter 6). 

In addition, the pipeline can easily incorporate additional features both imaging-related and non-imaging 

subject characteristics (Chapters 7-8). We have provided clinical context to the work by comparing 

theoretical nodule management procedures in accordance with clinical guidelines (i.e. Fleischner, Lung-

RADS, BI-RADS) compared to risk stratification with the developed QIC-RATE tools.  

With the growing use of medical imaging in the field of oncology, in lung cancer particularly, 

there is an increasing need for tools that provide diagnostic assessment with minimal added time, cost or 

risk to the patient. The work presented in this thesis addresses this need through establishing the QIC-

RATE pipeline; a modular, scalable, transferrable pipeline for extracting, reducing and selecting, and 

training a classification tool based on QICs. Altogether, this resulted in a methodology that is validated, 

stable, high performing, adaptable, and transparent.  
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APPENDIX A: STATISTICAL METHODS 

This section details the performance and statistical comparison techniques used in this 

dissertation. The reported measures provide assessment of the results, additional performance and 

statistical measures exist but were not applied here for the sake of clarity and consistency. 

A.1. Classifier Performance Measures 

Tool performance was assessed using area-under the receiver operating characteristic curve (AUC-ROC) 

and area-under the precision-recall curve (AUC-PR)141 .  

A.1.1. Receiver-Operator Characteristic Curve 

Area-under-the-curve of the receiver-operator characteristic (AUC-ROC), also known as the c-

statistic, is a common binary classification assessment measure. It is equal to the probability that a higher 

risk will be assigned to a randomly chosen true high-risk case (here, cancer) than a randomly chosen low 

risk case (here, non-cancer)141-143. The curve itself plots the tradeoff between the true positive rate against 

the false positive rate for every possible threshold of predicted risk (between 0 and 1); AUC-ROC is 

calculated as the integration of the plotted curve. Extreme values of AUC-ROC indicate: 1 as complete 

true separation of classes (all true high-risk cases predicted at greater risk than all true low-risk cases), 0 

as complete false separation of classes (all true high-risk cases predicted at lower risk than all true low-

risk cases, note: still perfect classification can flip prediction about risk = 0.5 for AUC-ROC = 1), and 0.5 

as random chance (prediction no better than randomly assigning risk). 

A.1.1.1. Delong – Comparison of ROC curves 

The Delong approach is a nonparametric method of evaluating and comparing the performance of 

diagnostic tests using theory on generalized U-statistics144. The 95% confidence interval for AUC-ROC 

can be assessed using bootstrapping methods of the Delong approach. The ROC of two different 

classifiers on the same subjects can be compared for statistical difference. A caveat to this method has 

been raised in Delmer et al. with regards to this comparison on ‘nested’ risk prediction models – 

essentially, two models: one built with a full set of N features and the other built with a subset of the N 

features145. In this work, the Delong approach is only used to compare models built with sufficiently 

different predictor variables. 

A.1.2. Precision-Recall Curve 

AUC-ROC assessments can be influenced by class imbalance (i.e. a dataset with different 

proportions of high-risk vs low-risk classes). The precision-recall curve and associated integrated area-

under (AUC-PR) can provide a more robust analysis of performance. Similar to AUC-ROC, AUC-PR is 
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taken as the integration of the plot of precision against recall. Extreme values of AUC-PR indicate: 1 as 

perfect classifier with complete true separation of the classes and prediction values at the binary poles and 

0 as a poor classifier.  

A.1.3. Categorizing Risks - Thresholds  

While AUC-ROC and AUC-PR are robust measures of classifier performance, eventually for 

clinical utility, a set threshold must be selected as a ‘cut-off’ point which will binarize the predicted risk 

into discrete categories. Once a threshold has been selected, measures of accuracy, sensitivity, and 

specificity can be calculated.  

A.1.3.1. Rounding Prediction Threshold 

As binary classifier prediction results are trained to provide a floating-point number between 0 

and 1, rounding to the nearest whole number is a natural thresholding method. Here, all cases with a 

prediction level below 0.50 are classified as benign and all above 0.50 are classified as malignant. This is 

the method that was used in the prior approach and was carried through in the feature reduction and 

selection methodology development sections (Appendices E and F). 

A.1.3.2. Youden Threshold 

The Youden threshold is based on the optimal value of the Youden J Statistic146. The Youden J 

statistic finds the optimal point for the sensitivity-specificity tradeoff: 

𝐽 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 

[Equation A.1.3.1] 

In a perfect classification (AUC-ROC = 1, AUC-PR = 1), the Youden has near-infinite possibilities (as all 

conceivable thresholds between >0 and < 1), in this case the Youden can be set a 0.5.  

A.1.3.3. Custom-Calibrated Thresholds 

The selection of a threshold can be heuristically done to suit the needs and calibration 

requirements of the model. This can be done by simply selecting the threshold that meets the desired 

requirements in the training cohort. For example, the user may wish to apply a threshold aiming to 

achieve 90% sensitivity. To do this, the AUC-ROC curve can be interrogated for a threshold that achieves 

90% sensitivity in the training data can be determined.  
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A.1.3.4. McNemar’s – Classification Error of Threshold or Categorized Risk 

McNemar’s test is a statistical test used on paired nominal data to determine whether there is 

marginal homogeneity in classification score between two tools147. The test is applied to a 2x2 

contingency table as follows:  

McNemar’s 

Contingency Table 

Tool 1 

Correct Incorrect 

Tool 2 
Correct A B 

Incorrect C D 

 

The McNemar test statistic is: 

𝜒2 =  
(𝐵 − 𝐶)2

𝐵 + 𝐶
 

[Equation A.1.3.3.1] 

This was modified for continuity correction by Edwards to approximate the binomial exact p-value: 

𝜒2 =  
(|𝐵 − 𝐶| − 1)2

𝐵 + 𝐶
 

[Equation A.1.3.3.2] 

X2 has a chi-squared distribution with 1 degree of freedom.  

A.1.4. Threshold-based Performance Measures 

From a threshold, several performance measures can be assessed including: 

Accuracy:  

𝑎𝑐𝑐𝑟𝑢𝑎𝑐𝑦 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

[Equation A.1.4.1] 

Sensitivity (also known as: recall, hit rate, or true positive rate): 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

[Equation A.1.4.2] 

Specificity (also known as: selectivity or true negative rate): 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

[Equation A.1.4.3] 

A.2: Variable/Features Statistic Differences 

A.2.1. Continuous Variables 

For continuous variables, normality is assessed using the Jarque-Bera goodness-of-fit test148. For 

variables that conform to normality, statistical difference of is assessed with either a two-sample t-test. 
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Paired t-tests operate under the null hypothesis that the means are equal; non-paired t-tests operate under 

the null hypothesis that the mean differences are equal. 

For variables that fail the Jarque-Bera test, either the Wilcoxon signed rank test (paired) or Wilcoxon rank 

sum test (non-paired) is used to assess statistical differences in groups149. The Wilcoxon signed rank test 

operates under the null hypothesis that the medians are equal; the Wilcoxon rank sum test operates under 

the null hypothesis that the median differences are equal.  

A.2.2. Discrete or Categorical Variables 

A.2.2.1. Fisher’s Exact Test 

For nominal variables, Fisher’s exact test is a method for determining if there are statistical non-

random associations from contingency tables150. Fisher’s exact test operates under the null hypothesis that 

the proportions are equal.  

A.2.2.2. Persons’ chi-squared test 

The Person’s chi-squared test is a statistical test for unpaired nominal data used to assess 

goodness-of-fit, homogeneity, and independence which uses contingency tables151. It is suitable for use 

when at least 75% if cells of the contingency table are expected to have counts greater than five. Person’s 

chi-squared test operates under the null hypothesis that the proportions are equal. 

A.3. Data Partitioning Methods 

A.3.1. Training/Validation 

The ultimate goal of a classification tool is to be employed on cases were the true classification is 

unknown. As such, it is imperative to examine how a tool performs on new, non-development cases. A 

common method to achieve this performance analysis is splitting the dataset into a training set and a 

validation set. The classification tool is developed using only the training set and the finalized tool is 

tested on the validation set; in this schema, the tool has been blinded to the true classification of the 

validation subjects allowing for quasi-real-world performance measures to be obtained.  

This process has limitations. As the training dataset is only a subset of the available data, the development 

of the tool is potentially only seeing a fraction of the true dataset variance. This is a particular issue in 

datasets that are small or that contain a large variability in subject presentation; in these cases, the 

developed tool is more likely to either be over-trained on the development dataset or to perform poorly on 

new cases that have variability not seen in the development dataset. 
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A.3.2. K-fold Cross Validation 

K-fold Cross validation (kCV) is a dataset partitioning method that seeks to alleviate the 

limitations of the training/validation method and utilize the entire dataset both as training and as 

validation cases. kCV is performed by randomly portioning the dataset into k-groups of subjects. Then, 

the classifier development and validation steps are repeated k-times with each time a different group left-

out of development and used for validation. In this method, the performance measures (AUC-ROC, AUC-

PR, sensitivity, specificity, etc.) are calculated from the group’s validation-run predictions. The selection 

of k is often limited by computational load of classifier development. Small values of k reduce the 

number of times the development-validation steps need to be run, but it increases the limitations seen in 

A.3.1 as the classifier is being trained on fewer cases. Large values of k increase the number of cases used 

in training a classifier but require more runs of the development-validation steps which can be prohibitive 

in classification development pipelines that are computationally complex. The most common k used in 

kCV is 10. 

A.3.3. Leave-one-out (Extreme k-fold Cross Validation) 

Leave-one-out (LOO) is an extreme form of kCV where k is equal N, to the number of subjects. 

The development-validation pipeline is run N-times. In this method, the performance measures (AUC-

ROC, AUC-PR, sensitivity, specificity, etc.) are calculated from the subjects left-out validation-run 

predictions. This method utilizes the most data for development (N-1 cases) which makes it efficient in 

dataset variability inclusion; however, in cases were classifier development takes a significant amount of 

time and/or computational power it can be prohibitive. LOO is most suited to small datasets.  

  



96 

APPENDIX B: MATHEMATICAL PREDICTION MODELS 

B.1. Model Formulas 

For each model x is calculated such that the pre-test probability of malignancy is 
𝒆𝒙

(𝟏+𝒆𝒙)
 

B.1.1. Mayo Clinic (MC) Model 

The Mayo Clinic (MC) MPM, published 1997, was developed on 629 subjects with nodules (146 

malignant, 406 benign, 77 indeterminant) using clinical radiograph and CT scans57. It is specified using 

the following definition of x: 

 

𝑥 =  −6.8272 + 0.0391 ∗ 𝑨𝒈𝒆 + 0.7917 ∗ 𝑺𝒎𝒐𝒌𝒆𝒓 + 1.3388 ∗ 𝑪𝒂𝒏𝒄𝒆𝒓𝑯𝒙 + 0.1274 ∗ 𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓 + 1.0407 ∗

𝑺𝒑𝒊𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏 + 0.7838 ∗ 𝑼𝒑𝒑𝒆𝒓𝑳𝒐𝒃𝒆  

[Equation B.1.1] 

 

In this equation, Age is the patient’s age in years, Smoker (binary) equals 1 if the patient has a history as a 

current or former smoker (otherwise = 0), CancerHx (binary) is 1 if the patient has a history of 

extrathoracic cancer that was diagnosed more than 5 years ago (otherwise = 0), Diameter is the maximum 

in-plane diameter of the nodule in millimeters, Spiculation (binary) is 1 if the edge of the nodule is 

spiculated (otherwise = 0), and UpperLobe (binary) is 1 if the nodule is located in the left upper lobe 

(LUL) or right upper lobe (RUL) (otherwise = 0). 

B.1.2. United States Department of Veterans Affairs (VA) Model 

The U.S. Department of Veterans Affairs (VA) MPM, published 2007, was developed on 375 

subjects with nodules (204 malignant, 171 benign) using CT scans acquired as part of a prospective study 

comparing the effectiveness of PET-CT and CT58,152. It is specified using the following definition of x: 

 

𝑥 =  −8.404 + (0.779 ∗
𝑨𝒈𝒆

10
) + (2.061 ∗ 𝑺𝒎𝒐𝒌𝒆𝒓) + (0.112 ∗ 𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓) − (0.567 ∗ 𝑪𝒆𝒔𝒔𝒂𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆) 

[Equation B.1.2] 

 

In this model, Age is the patient’s age in years, Smoker (binary) equals 1 if the patient has a history as a 

current or former smoker (otherwise = 0), Diameter is the diameter of the nodule in millimeters, and 

CessationTime is the number of years since quitting smoking. 
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B.1.3. Peking University (PU) Model 

The Peking University (PU) MPM, published 2012, was developed on 375 subjects with nodules 

(229 malignant, 142 benign) using clinical radiograph and CT scans60. It is specified using the following 

definition of x: 

 

𝑥 =  −4.496 + (0.07 ∗ 𝑨𝒈𝒆) + (0.676 ∗ 𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓/10) + (0.736 ∗ 𝑺𝒑𝒊𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏)

+ (1.267 ∗ 𝑭𝒂𝒎𝒊𝒍𝒚 𝑯𝒊𝒔𝒕𝒐𝒓𝒚 𝒐𝒇 𝑪𝒂𝒏𝒄𝒆𝒓) − (1.615 ∗ 𝑪𝒂𝒍𝒄𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏) − (1.408 ∗ 𝑩𝒐𝒓𝒅𝒆𝒓) 

[Equation B.1.3] 

 

Here, Age is the patient’s age in years, Diameter is the diameter of the nodule in millimeters, and 

Spiculation, Family History of Cancer, Calcification, and Border (all binary) are 1 if the risk variable is 

present (otherwise = 0).  

B.1.4. Brock University (BU) Model 

The Brock University (Brock) MPM, published 2013, was developed on 1871 subjects with 

nodules (102 malignant, 1769 benign) using low-dose screening CT scans59. It is specified using the 

following definition of x: 

 

𝑥 = (0.0287 ∗ (𝑨𝒈𝒆 − 62)) + (0.6011 ∗ 𝑺𝒆𝒙) + (0.2961 ∗ 𝑭𝒂𝒎𝒊𝒍𝒚 𝑯𝒊𝒔𝒕𝒐𝒓𝒚 𝒐𝒇 𝑳𝒖𝒏𝒈 𝑪𝒂𝒏𝒄𝒆𝒓) + (0.2953

∗ 𝑬𝒎𝒑𝒉𝒚𝒔𝒆𝒎𝒂) − [5.3854 ∗ (
𝑵𝒐𝒅𝒖𝒍𝒆 𝑺𝒊𝒛𝒆

10
)

−0.5

− 1.58113883] + 𝑵𝒐𝒅𝒖𝒍𝒆 𝑻𝒚𝒑𝒆 + (0.6581

∗ 𝑼𝒑𝒑𝒆𝒓𝑳𝒐𝒃𝒆) − (0.0824 ∗ (𝑵𝒐𝒅𝒖𝒍𝒆 𝑪𝒐𝒖𝒏𝒕 − 4)) + (0.7729 ∗ 𝑺𝒑𝒊𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏) − 6.7892 

[Equation B.1.4] 

 
Here, Age is the patient’s age in years, Sex is 1 if the patient is female or 0 if the patient is male, Family 

History of Lung Cancer is 1 if there is a family history of lung cancer (otherwise = 0), Emphysema is 1 

if emphysematous changes is noted in the lungs (otherwise = 0), Nodule Size is the diameter of the nodule 

in millimeters, Nodule Type is -0.1276 if the nodule is nonsolid or ground-glass, 0.377 if the nodule is 

partially solid, or 0 if the nodule is solid, UpperLobe is 1 if nodule is located in the left upper lobe (LUL) 

or right upper lobe (RUL) (otherwise = 0), Nodule count is number of nodules noted in the lungs, and 

Spiculation is 1 if the nodule is spiculated (otherwise = 0). 

B.2. Youden Threshold Stability and Calibration Set Size Algorithm 

The following section describes the methods and results of determining an adequate calibration cohort 

size for Youden threshold stability.  
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B.2.1. Median Absolute Deviation 

Median absolute deviation (MAD) was selected as the measure to determine adequate calibration 

cohort size as it is relatively insensitive to outliers and considers the full unsigned deviation from the set 

median.  

𝑚𝑒𝑑𝑖𝑎𝑛( 𝑎𝑏𝑠( 𝑡𝑟𝑖𝑎𝑙𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑠𝑒𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)) 

[Equation B.2.1] 

 

Here, the trialthreshold is the threshold calculated for a single trial and the medianset threshold is the median 

threshold across all trials with a given cohort size.  

B.2.2. Algorithm for determining Youden threshold stability 

Algorithm (Pseudo-code) for determining the Youden threshold stability:  

 For each N = 50 by 5 to 250 
  For each trial in 10,000  
   Trial_sample = Random sample N subjects from the full cohort without replacement 
   Trial_Youden = Calculate Youden threshold for trial sample 

End 
                N_median = median of Trial_Youden 
  N_MAD = median of the absolute of Trial_Youden – N_median  

End  
Find arg-min(N_MAD < 0.05) 
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APPENDIX C: SEMI-AUTOMATIC SEGMENTATION METHODS 

C.1. Semi-automated Segmentation Pipelines 

C.1.1. FIJI-ImageJ (FIJI) 

The FIJI segmentation was performed by processing through a series of built-in FIJI plugins (free 

download available from: https://fiji.sc/). The CT digital imaging and communications in medicine 

(DICOM) dataset was imported into FIJI and the windowing level for the image was adjusted for 

improved lung tissue contrast (level = -600 HU, window = 1600). Using the 3D Crop Plugin, the VOI was 

selected to match the manual segmentation. For parenchyma segmentation the image was processed to a 

binary mask using the Otsu Threshold Method (18). For nodule segmentation, the VOI was first inspected 

for obstructions interacting with the nodule; if an attachment occurred then the offending voxels were 

removed using the Drawing Tool to set their value to background. Once the nodule was isolated, 3D 

Manual Spot segmentation was done by placing a seed in the center of the nodule and applying a 

Classical Gauss fitting threshold whose parameters, radius (1-3.5) and standard deviation (0.5-3.0), were 

manually adjusted to contain only the nodule voxels.  

C.1.2. MeVisLab (MVL) 

The MVL segmentation was performed by building a pipeline consisting of existing MVL 

plugins (free download available from: http://www.mevislab.de/mevislab/). The CT DICOM dataset was 

imported into the MVL platform and each VOI selected to correspond with the manual segmentation. For 

parenchymal segmentation, a seed was added to the nodule and all non-parenchymal lung objects (chest 

wall, vessels). These regions were grown using a 3D 6-Neighborhood relation with smart region growing 

at an interval size of 5%. A binary mask of the region was generated and saved as the valid parenchyma 

mask. For nodule segmentation, the previous region-grown mask was analyzed for nodule obstructions 

and offending voxels were removed by setting their value to background. Using this mask, a seed was 

added to the center of the nodule and again underwent region-growing using an interval size of 5%.  

C.1.3. ITK-Snap (ITK-S)  

The segmentation in the ITK-S environment ( http://www.itksnap.org/pmwiki/pmwiki.php) did 

not require any pipeline development outside of the Select Active Contour Segmentation (SNAKE) 

function. The CT DICOM dataset was imported into ITK-S, and the VOI was selected to correspond with 

the manual segmentation VOI. For parenchyma segmentation preprocessing was performed using the 

clustering mode of SNAKE, and bubbles of radius 10 were placed throughout the parenchyma including 

at least one for every three slices in the VOI. The active contour was evolved until the parenchyma was 

encompassed. For nodule segmentation, SNAKE was also used; the dataset was pre-processed by 

https://fiji.sc/
http://www.mevislab.de/mevislab/
http://www.itksnap.org/pmwiki/pmwiki.php
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adjusting the lower threshold to ~-500 HU and setting the upper threshold to the HU maximum. The 

segmentation was initialized by placing a bubble in the centroid of the nodule and adjusting the radius of 

the bubble so as to not exceed the nodule boundary. The active contour was evolved until the nodule was 

encompassed. If the irregular shape of the nodule provided a poor fit using the default settings of 

SNAKE, then adjustments were made to the region competition and smoothing forces which act as cost 

functions to emphasize connectivity and smooth geometries. 

C.1.4. Mukhopadhyay-MatLab (ML) 

This method followed the segmentation framework for solid pulmonary nodules described by 

Mukhopadhyay85,88. It consisted of a MatLab script containing a pipeline of built in functions. The CT 

DICOM data was imported to MatLab and a VOI selected to correspond with the manual segmentation. A 

seed point was selected at the centroid of the nodule. To generate the nodule mask, the VOI was pre-

processed by thresholding at -500 HU followed by connected components analysis to generate a 

foreground image of the nodule and any attachments. In this method, pleural attachments were removed 

through identification of points on the nodule boundary by ray casting from the seed point and convex 

hull operation on a fitted ellipsoid enclosing the nodule, and vessel attachments were removed through 

pruning of geodesic distance maps. To generate the parenchyma mask, the VOI was processed by 

intensity thresholding up to -500 HU.  

C.1.5. Graph-cuts (GC) 

Building upon the strengths of the other assessed pipelines, an in-house method was developed in 

MatLab, incorporating graph cuts. A seed point was placed at the nodule centroid and several (1-10) were 

placed in the lung parenchyma. Using a closed 26-neighborhood connected component analysis and 

Otsu’s thresholding, the lungs were roughly identified. The maximum length of lungs from posterior to 

anterior was found and the midpoint of the lung was identified. From the midpoint, 15% of the maximum 

length was dilated. The masked image was smoothed using a curvature anisotropic diffusion filter. A 

graph was constructed using image intensity and nodule size considerations: the boundary term coming 

from the local image gradient and the regional term incorporating two properties of the nodule, (1) 

intensity-based probability (assumed means of the background and object based on prior knowledge) and 

(2) a distance-based probability based on geodesic distance from the seed point. This graph was then run 

through a graph-cuts algorithm employing the fast-continuous max-flow method proposed by J. Yuan and 

Y. Boykov153. Post-processing of nodule attachments was done using the approaches of Mukhopadhyay 

explained in the ML section above.  
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C.2. Perinodular Parenchyma Rings and Bands Segmentation Methods 

As we hypothesize nodules to have a size-proportional effect on their surrounding structures, 

parenchymal rings were taken as a percentage of the nodule maximum in-plane diameter. We investigated 

exclusive parenchyma bands at each of the quartiles (25%-band, 50%-band, 75%-band, and 100%-band) 

and inclusive parenchyma rings at each of the quartiles (25%-ring, 50%-ring, 75%-ring, and 100%-ring); 

Figure C.1 shows the production of the parenchyma bands compared to rings. Parenchymal features 

pulled from the bands will be compared between band sizes and to the previous results using inclusive 

parenchymal rings. This seeks to determine if the significant signal is coming from the exclusive or 

inclusive parenchymal percent.  

 

Figure C.1: Pictorial representation of parenchymal rings and parenchymal bands. Green indicates the region of feature 

extraction, N represents the corresponding pulmonary nodule.  
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C.3. Segmentation Performance Analysis 

Tool performance was analyzed using five measures: sensitivity, specificity, Jaccard distance, 

volumetric error rate, and scaled Hausdroff distance. Let A be the nodule truth mask, B be the nodule 

mask resulting from a semi-automated tool. Similarly, let C be the background truth mask and D be the 

background mask resulting from a semi-automated tool.  

C.3.1. Sensitivity and Specificity 

The sensitivity and specificity have been used to assess segmentation accuracy compared to a 

truth with 1 being completely accurate and 0 being no accuracy. In sensitivity and specificity, the overlap 

of correctly labeled voxels is summarized. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
|𝐴 ∩ 𝐵|

|𝐴 ∩ 𝐵| + |𝐶 ∩ 𝐵|
 

[Equation C.2.1.1] 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
|𝐶 ∩ 𝐷|

|𝐶 ∩ 𝐷| + |𝐴 ∩ 𝐷|
 

[Equation C.2.1.2] 

C.3.2. Jaccard Distance 

The Jaccard distance (JD) has been used to measure the overlap similarity between segmentations 

in several other publications with 1 being no overlap and 0 being complete overlap154. The JD uses the 

presence of the data while ignoring information about the data abundance. It is calculated by subtracting 

from one the ratio of the size of the intersection and the size of the union of the two masks (A - truth and 

B - tool):  

𝐽𝐷𝑛𝑜𝑑𝑢𝑙𝑒(𝐴, 𝐵) = 1 − 
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

[Equation C.2.2] 

C.3.3. Volumetric Error Rate 

The volumetric error rates (VE) have been used to indicate base-level variation in segmentation 

sizes. The result ranges from -100% to 100% with 0% error being optimal 155. Unlike the JD, the VE 

indicates the direction of the error, with negative errors showing an underestimation by the tool and 

positive errors an overestimation. The VE is not a direct metric of mask overlap or spatial similarity but 

rather a metric of size similarity.  

𝑉𝐸𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =
𝑉𝑡𝑜𝑜𝑙 − 𝑉𝑡𝑟𝑢𝑡ℎ

𝑉𝑡𝑟𝑢𝑡ℎ

% 

[Equation C.2.3] 
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C.3.4. Scaled Hausdorff Distance  

The Hausdorff distance (HD) is a measure of the differential distance between corresponding 

edge points on two masks156.  

𝐻(𝐴, 𝐵) =  
𝑚𝑎𝑥

𝑎 ∈ 𝐴 
{

𝑚𝑖𝑛
𝑏 ∈ 𝐵

{ 𝑑(𝑎, 𝑏) }} 

[Equation C.2.4.1] 

𝑆𝐻𝐷 =  𝐻(𝐴, 𝐵)/max (𝐻(𝐴, 𝐵), 𝑐𝑜ℎ𝑜𝑟𝑡) 

[Equation C.2.4.2] 

 

Here, d(a,b) is the distance from pixel a in mask A to pixel b in mask B. The minimum distance between 

a and b seen over all the edge pixels b is calculated for each pixel a; this corresponds to the corresponding 

closest edge pixel on the scans. The maximum of these minimum distances over all the edge pixels is the 

maximum HD (MHD). To that end, an MHD value of 0 equates to two identical masks and a HD value 

approaching infinity equates to dissimilar masks. The major advantage of MHD is that because it 

demonstrates the differences in only the edges of the segmentation, it is not influenced as much by the 

bulk of the mask (interior voxels), which constitute a large sway in the JD and VE. For comparison 

among tools, Hausdroff Distance was scaled (SHD) to be from 0 to 1 as in Equation C.2.4.2, with 1 

being the maximum MHD seen in the complete cohort of segmentations. 
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APPENDIX D: FEATURE EXTRACTION 

The feature set was expanded to include additional imaging features, specifically texture and new size 

measures novel to classification schema.  

D.1. Intensity Features 

Five intensity histogram (IH) features were added. The image voxel value at percentiles 5th, 25th, 7th, 

and 95th. The proportion of voxels about 100 HU was included to potentially identify nodules with 

calcifications80.  

• Percentile 5th, 25th, 75th, 95th  • Proportion Above 100 HU 

D.2. Gray-Level Run-Length Textures 

Gray-level run length (GLRL) features have been widely used in the arena of medical imaging feature 

extraction89-91. A run is a set of consecutive, collinear voxels with the same gray level value. Runs are 

calculated in all of the principle directions (0°,45°, 90° ,135°). From these matrices’ measures of coarse 

texture (long runs) and fine texture (short runs) can be extracted as well as gray-level and run non-

uniformity which could describe texture heterogeneity.  

• Short Run Emphasis  

• Long Run Emphasis  

• Gray-Level Non-uniformity  

• Run-Length Non-uniformity  

• Run Length Percentage  

• Low Gray-Level Run Emphasis 

• High Gray-Level Run Emphasis 

• Short Run Low Gray-Level Emphasis 

• Short Run High Gray-Level Emphasis 

• Long Run Low Gray-Level Emphasis 

• Long Run High Gray-Level Emphasis 

• Gray-Level Variance 

• Run-Length Variance 

D.3. Gray-Level Size-Zone Textures 

There are 13 gray-level size zone texture features (GLSZ) were generated from size zone matrix built 

under run length matrix principles where the value of the matrix at a (row, column) is equal to the (gray 

levels, number of zones of a size)92. This results in a matrix size of number of gray levels by a 

quantization of the size of the largest zone; a heterogeneous texture would result in a tall and thin matrix 

while a homogenous texture matrix would be short and wide. These additional features include measures 

of emphasis, non-uniformity, and variance in the size and distribution of the gray-level size zone matrix.  

• Small Zone Emphasis 

• Large Zone Emphasis 

• Gray-Level Non-uniformity  

• Zone-Size Non-uniformity 

• Zone Percentage 

• Low Gray-Level Zone Emphasis 

• High Gray-Level Zone Emphasis 

• Small Zone Low Gray-Level Emphasis 

• Small Zone High Gray-Level Emphasis 

• Large Zone Low Gray-Level Emphasis 

• Large Zone High Gray-Level Emphasis 

• Gray-Level Variance 

• Zone-Size Variance 
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D.4. Neighborhood Gray-Tone Difference Matrix Textures 

Neighborhood Gray-Tone Difference Matrix Textures (NGTD) are a set of five features whose 

derivations were heuristically developed to assess for texture types within a region93. Five texture features 

calculated from the neighborhood gray-tone difference (NGTD) matrices were added to the feature set. 

The computational form of the matric properties expresses spatial changes in image intensity and the 

dynamic range of intensity; the matric being one-dimensional representation of summing the difference 

between the gray level of the pixel and the average gray level of the surrounding neighbors. These 

features tend to be more macroscopic than GLRL and GLSZ textures as they were developed to mimic 

human perception, including measures for coarseness, contrast, busyness, complexity, and strength of 

texture. 

• Coarseness 

• Contrast 

• Busyness 

• Complexity 

• Strength 

D.5. Size and Shape features 

Volume, calculated as the number of voxels in the segmentation mask times the voxel 

dimensions; as it is rare for medical images to be isotropic in all three dimensions, it is possible this is a 

lower resolution than the other size metrics calculated only in the principle plane80.  

Two features novel to tumor classification applications were also included which take the area and 

diameter of the nodule and adjust them to the HU of the nodule; specifically calculating what the area and 

diameter of a nodule would be if it was entirely composed of water. Originally, these have been used in 

dose calculations of CT scans94. We included them in this expanded feature set as a potential supplement 

to traditional size measures in the case where segmentation variation can affect; with this measure, so 

long as the bulk segmentation is correct, the inclusion of a variable number of parenchymal border voxels 

has less effect on the overall measure.  

• Volume 

• H2O Equivalent Diameter 

• H2O Equivalent Area 
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APPENDIX E: FEATURE SET REDUCTION 

While the extraction of many features increases the confidence in finding features helpful to 

classification, it most likely includes some features that are highly related to each other. Highly correlated 

features in selection and classification can lead to model instability and decreased interpretability. To 

decrease the number of features with high correlations we proposed a feature set reduction approach 

where groups of highly inter-correlated features were condensed into a single representative feature; this 

approach was tested on two methods of reduction: k-medoids clustering95 and principal component 

analysis (PCA)157. These tests were run using the original feature set on the original 50 cases (24 

malignant, 26 benign); Figure E.1 demonstrates the pairwise correlation between the extracted features 

on a heatmap10. Visualization of these tests is found in Figure E.2.To test the performance of the 

reduction method to preserve good-classifying features, the reduced feature set was pushed through a 

leave-one-out feed-forward (LOOFF) feature set selection method using an ANN with two hidden layer 

nodes, alpha = 1.716, beta = 0.6667, eeta = 0.03. Performance measures of AUC-ROC, sensitivity, and 

specificity are displayed in Table E.1.  

 

Figure E.1: Heatmap visualization of features’ pairwise Pearson’s correlations. Note large blocks of highly correlated 

features about the diagonal are groups of Law’s texture energy measures.  
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Figure E.2: Visualization of reduction tests on plot of k verses the average adjusted silhouette widths for k = 2:50. 

Definition of abbreviations: PCA – principle component analysis; AABS – average adjusted best silhouette 

E.1. K-medoids Clustering 

Clustering is a method of dimensionality reduction that seeks to group like-elements. The k-

medoids clustering algorithm is a distance-based grouping procedure which attempts to produce optimal 

groups by maximizing a cluster’s silhouette value by minimizing the sum of dissimilarities between 

objects and their medoids 95,96. Each cluster is denoted by one silhouette signifying the proportion of 

objects within a cluster and in an intermediate clustering position; the greater the silhouette value, the 

more appropriate the clustering.  

𝑠(𝑝) =  
𝑛𝑜𝑛𝑚𝑒𝑚𝑏𝑒𝑟𝑙𝑒𝑎𝑠𝑡 𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑠.(𝑝) − 𝑚𝑒𝑚𝑏𝑒𝑟𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑠.(𝑝)

max 〈𝑛𝑜𝑛𝑚𝑒𝑚𝑏𝑒𝑟𝑙𝑒𝑎𝑠𝑡 𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑠.(𝑝), 𝑚𝑒𝑚𝑏𝑒𝑟𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑠.(𝑝)〉
→ [−1,1] 

[Equation E.1.1] 

K-medoids is similar algorithmically to the popular k-means clustering except the objects are 

grouped around a representative object, termed the medoid, instead of the mean value. Here, we perform 

k-medoids clustering using a distance matrix composed of the pairwise correlations between features 

(Figure E.1). As the k-medoids algorithm requires the number for k to be known at the beginning, four 
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tests were devised to determine the k for feature reduction. These included setting k: (1) equal to the 

number of features to be selected, (2) equal to the k with the best average silhouette width, (3) equal to all 

k with similar silhouette widths to the best average silhouette width, and (4) equal to all k between 2 and 

N-5.  

E.1.1. K = N/10 (Peduzzi limitation) 

A baseline test of feature set reduction was run where the number of clusters equaled the heuristic 

limitation on maximum number of features set forth by Peduzzi, it was indicated that in a regression 

analysis model overfitting was generally prevented using a limitation of one predictor for every ten 

independent subjects158.  

Here, K was set to 50/10 = five clusters. The medoid features selected were all LTEM features: 

nodule mean-21, nodule variance-19, nodule kurtosis-31, parenchyma variance-25, and parenchyma 

skewness-20. The selection of LTEM features is not surprising as they make up a large proportion 

(272/386) of the full feature set and they tend to be highly correlated with each other which would drive 

silhouette optimization. The medoids of the resulting clusters were used in building the ANN; no 

additional feature selection was required or performed during this test.  

E.1.2. K = best average silhouette width & LOOFF 

A single cluster’s silhouette is a goodness-of-fit measure for all points within a cluster. To find 

the best clustering among features, we calculated the average cluster silhouette produced by k-medoids 

with k from two to ninety-nine. For this feature dataset, the maximum average cluster silhouette was 

achieved with k = 24. The medoids of the twenty-four clusters were sent through the LOOFF selection 

resulting in an ANN built from the following five features: nodule minimum HU (IH), parenchyma 

entropy HU (IH), parenchyma variance-10 (LTEM), physical sphere variance (BASC), and standard 

deviation of slopes (BCRR).  

E.1.3. Medoids with similar silhouette widths & LOOFF 

From Figure E.2, it is clear that while k = 24 had the highest average silhouette measure there 

were other values of k which produced similarly high performing clusterings. It is possible then, these 

similar clusterings are just as good with very minor differences due to the dataset bias. For this test, we 

examined the results of using the medoids from k-clusterings with an average silhouette within 0.02 of the 

highest (0.8734).  

E.1.4. K = 2:45 & LOOFF 

From visual inspection of the full correlation matrix heatmap (Figure E.1), we estimated there 

could be a maximum of 45 clusters. For this test, we took any feature selected as a medoid for each of the 
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44 runs of k-medoids and ran it through LOOFF selection. Note, this provided the LOOFF selection 

pipeline with a similar number of features (63) to the Prior Approach (72). 

E.2. Principle Component Analysis 

Principle component analysis is a dimensionality reduction technique which finds the direction 

and spread of maximum variance and uses orthogonal transformations to convert the data points to a set 

of linearly uncorrelated variables. Visually, it can be thought of as fitting an N-D ellipsoid to the data set 

where each axis represents a principle component explaining a percentage of the variance in the dataset. 

The eigenvector, the direction of the principle component, can be used to transform data points into 

component scores. The component score is a combination of all the features included in the PCA and can 

be used as the representative feature. In this work, we have used principle component analysis on clusters 

determined by k-medoids clustering, meaning each principle component feature is the combination of all 

features in that cluster.  

E.2.1-4. Application of PCA to clusters in E.1.1-E.1.4 

Each of the four reduction tests performed in the k-medoids section were further reduced by using 

the principle component adjusted features for the clusters. These adjusted features were used in building 

the ANN using LOOFF set selection method.  

• E.2.1 – Principle components of K = N/10 (Peduzzi limitation) 

• E.2.2 – Principle components of K = AABS 

• E.2.3 – Principle components of K with similar silhouettes to AABS 

• E.2.4 – Principle components of K = 2:45 

E.3. Selecting a Method of Feature Reduction 

We selected AABS from k-medoids as the method for feature reduction as it obtained a high AUC-ROC 

and the highest sensitivity. In machine learning and medical tests in general, there is often a need for an 

unequal compromise between the sensitivity and the specificity of a tool depending on the specifics of the 

solution. In this case, we prioritize the case of over-diagnosing a benign nodule to the case of missing a 

malignancy. The risk of leaving a cancerous tumor could significantly allow for progression and possible 

metastasis before additional testing and treatment is sought while the risk of treating a benign nodule is 

secondary complications due to treatment or added testing. Both cases incur human costs in terms of 

unnecessary patient stress and decreased quality of care. From our prospective, we seek to error on the 

side of caution by prioritizing sensitivity measures over specificity; that being said, outlying cases will 

always exist, and classification performance should not be completely sacrificed to bring them into the 

correct classification. 
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Table E.1: ANN performance results from testing the feature set reduction methods on 50 subjects. Subject-level 

predictions and AUC-ROC were calculated from leave-one-out cross validation as described in section A.3.3. Sensitivity 

and specificity were calculated from the threshold described in section A.1.3.1.  

Test Reduction Method Specifics AUC-ROC Sensitivity Specificity  

Prior Statistical Significance Section A.2.1 0.938 0.909 0.929 

E.1.1 K-medoids K = N/10 0.862 0.711 0.991 

E.1.2 K-medoids AABS Clusters  0.939 0.944 0.934 

E.1.3 K-medoids AABS similar clusters 0.929 0.925 0.931 

E.1.4 K-medoids K = 2:45 0.938 0.911 0.966 

E.2.1 K-medoids + PCA PCA of K = N/10 0.823 0.691 0.928 

E.2.2 K-medoids + PCA PCA of AABS 0.920 0.925 0.905 

E.2.3 K-medoids + PCA PCA of AABS similar clusters 0.920 0.916 0.910 

E.2.4 K-medoids + PCA PCA of K = 2:45 0.911 0.902 0.923 

Definition of abbreviations: AUC-ROC – area-under-receiver-operator characteristics curve; N – number of subjects; 

AABS – average adjusted best silhouette; PCA – principle component analysis 

As number of cases grows and number of features remains constant, we expect there to be a 

plateau in the optimal k which would represent the true nature of the features’ interactions. The decision 

to use medoids as the feature reduction method has a two-fold advantage. Firstly, this method of 

clustering results in a representative feature, the medoid, which can provide insight into how features are 

affecting the classifier. K-medoids will not achieve a global minimum in all cases; however, the algorithm 

will always converge to a local minimum. To test the stability of the medoids in the dataset at a value of 

k, the method was run ten times with different seeded initializations to insure stable medoids. During the 

course of these investigations, we saw no variability in the medoid selection given the same dataset and 

value of k; therefore, we conclude the feature medoids are stable for most k.  
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APPENDIX F: FEATURE SET SELECTION 

F.1. Methodology Development and Testing 

The feature reduction methodology proposed in this dissertation (Appendix E) is performed 

independent of knowledge of classification. To determine the subset of features to use in classifier 

development, a feature set selection method is required. Methods have been proposed to assign rank to 

features either through forward selection of the best features or backwards elimination of least helpful 

features. The Prior Approach utilized LOOFF to determine the feature set for classifier development. 

While this was proven to be effective on a small cohort of 50 subjects and small number of features, it is 

computationally prohibitive in larger cohorts with more features available. We have methodically 

developed a method of feature set selection which is greatly improved in computational load while 

maintaining effectiveness on a large cohort of subjects. We tested six feature set selection methods on a 

cohort of 363 subjects (74 malignant, 289 benign) using an ANN with two hidden layer nodes, alpha = 

1.716, beta = 0.6667, eeta = 0.03. Performance measures of AUC-ROC, sensitivity, and specificity are 

displayed in Table F.1. 

F.1.1. Selecting K = N/10 (Peduzzi limitation) 

Previously, in E.1.1, we experimented with the use of an alternate, but simple, form of feature 

selection in the wherein we selected the number of clusters for k-medoids to be equal to the desired 

number of selected features per the Peduzzi limitation. This process was repeated for this larger dataset 

with k = 36, this process required no additional computational load after feature reduction. 

F.1.2. Selecting K = best average adjusted silhouette width (AABS) 

In E.1.2, it was demonstrated using the k with the best average silhouette width (AABS) 

performed well when combined with the LOOFF. Here, we used the ranked individual cluster silhouette 

widths to select features to represent the set as a whole. Coincidently, k=36 was determined to be the 

optimal clustering based on average cluster silhouette with adjustment for solo clusters, therefore both 

methods of only using k-medoids clustering for feature selection yielded the same results as F.1.1. 

F.1.3. Selecting N/10 with best Majority Votes from 10x10fold Cross Validation of K = best average 

silhouette width 

kCV, as described in A.3.2, can be used to better assess variability in a method by portioning the 

dataset into randomized batches and altering which folds are used for training and validation. As dataset 

translatability is a very important, we investigated the change in medoid selection using 10 rounds of 10-

fold cross validation (10x10foldkCV). This process yielded 60 unique medoid selected with fold-optimal 

medoid clustering k ranging from 32 to 41 (mean: 36.4±0.7). From the 60 unique medoids, we 
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implemented a majority votes selection process where features were ranked based on the number of times 

they appeared as a cluster medoid. The top 36 features were selected to build the ANN, the number of 

votes won (number of folds they were a medoid) by these features ranged from 389 to 71 (mean:120 ± 

59). 

F.1.4. Selecting N/10 using Information Theory and Random Forest Feature Importance Measures 

A feedforward feature selection process was developed using two types of feature interrogator 

measures: information theory and random forest qualities. This type of feature set selection method 

requires an objective to maximize over the set of potential features. To determine the best objective 

function for the selection pipeline we investigated Monte Carlo method of different weightings of the 

eight measures (three information theory, five random forest) to produce Equations F.1.4-6. 

Three information theory measures were extracted: mutual information of feature with class, 

interaction information within feature set, and mutual information of feature set with class 159. The two 

specific mutual information terms indicate how much detail the feature or feature set can describe the 

class variables. The interaction information within a feature set describes the amount of shared 

information in a feature set, or in other terms, the sum of the intra-redundancy. In terms of feature 

selection, we want to limit the amount of information shared by the feature set and the next feature we are 

adding as shared information leads to less overall knowledge gained by the classifier by the addition of 

that feature. Random forest is an ensemble classifier built using many small decision trees which have 

been generated using random subsets of the features160.  

Five random forest importance measures were available: average Gini index, mean decrease in 

accuracy, importance on class, importance on malignant, and importance on benign. At its base, a 

decision tree attempts to create pure branches, or nodes; first by spitting the cases based on the feature 

which best reduces the entropy of the resulting branches. In a random forest, many short (highly pruned) 

trees are grown by repeatedly randomly selecting a subset of features to split on. While these trees will 

most likely not be pure at the final branches, the advantage of this method is it allows for many different 

features to be selected for nodes which can both increase the translatability of the model by decreasing 

model variance and provide measures of relative feature importance in classification.  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥(0.40 ∗ 𝑀𝐼𝑐𝑙𝑎𝑠𝑠&𝑠𝑒𝑡 + 0.2 ∗ 𝐼𝐼𝑠𝑒𝑡 + 0.2 ∗ 𝑅𝐹𝑐𝑙𝑎𝑠𝑠 + 0.15 ∗ 𝑅𝐹𝑎𝑐𝑐 + 0.05 ∗ 𝑅𝐹𝑔𝑖𝑛𝑖)  

[Equation F.1.4] 

 

Here, MIclass&set is the mutual information between the set feature and classification, IIset is the interaction 

information between features in a set, RFclass is the random forest importance on class, RFacc is the 

random forest mean decrease in accuracy and RFgini is the random forest mean decrease in Gini index. 



113 

 

F.1.5. Selecting N/10 of Information Optimization Ranking 

From the weighting schema, the best performing stable method using solely the three information 

theory measures was used to develop the Information Optimization (IO) method of feed-forward feature 

set selection. The IO feature selection method was applied on the 60 medoids from the reduction method 

of 10x10foldkCV. The objective function follows:  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥(0.675 ∗ 𝑀𝐼𝑐𝑙𝑎𝑠𝑠&𝑠𝑒𝑡 + 0.225 ∗ 𝐼𝐼𝑠𝑒𝑡 + 0.1 ∗ 𝑀𝐼𝑐𝑙𝑎𝑠𝑠&𝑓𝑒𝑎𝑡𝑢𝑟𝑒)  

[Equation F.1.5] 

 

Here, MIclass&feature is the mutual information between the feature and classification, IIset is the interaction 

information between features in a set, and MIclass&set is the multi-mutual information between the feature 

set and classification.  

F.1.6. Selecting N/10 of Random Forest Importance Optimization  

From the weighting schema, the best performing stable method using solely the five random 

forest measures was used to develop the Random Forest Importance Optimization (RFIO) method of 

feed-forward feature set selection. The RFIO feature selection method was applied on the 60 medoids 

from the reduction method of 10x10foldkCV. The objective function follows:  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥(0.8 ∗ 𝑅𝐹𝑐𝑙𝑎𝑠𝑠 + 0.15 ∗ 𝑅𝐹𝑎𝑐𝑐 + 0.05 ∗ 𝑅𝐹𝑔𝑖𝑛𝑖)  

[Equation F.1.6] 

 

Here, RFclass is the random forest importance on class, RFacc is the random forest mean decrease in 

accuracy and RFgini is the random forest mean decrease in Gini index. 

F.2. Selecting a Method of Feature Selection 

We selected IO as the method for feature set selection as it obtained a high AUC-ROC and the 

highest sensitivity (Table F.1). The combination of k-medoids and IO can provide valuable insight into 

feature interaction and importance. For this dataset, it was coincidental that the best average of cluster’s 

silhouette occurred at k equal to the maximum number of features to select; we expect that as a dataset 

grows this k would eventually plateau at an optimal value unique to the full feature set and the data 

source. We performed to additional checks, F.2.1 and F.2.2 to ensure we were selecting the superior 

method of combination feature set reduction (AABS) and feature set selection (IO).  
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Table F1: ANN performance results from testing the feature set reduction and methods on 363 subjects. Subject-level 

predictions and AUC-ROC were calculated from 10-fold cross validation as described in section A.3.2. Sensitivity and 

specificity were calculated from the threshold described in section A.1.3.1. 

Test Reduction Method Selection Method AUC-ROC Sensitivity Specificity 

Prior Statistical Significance LOOFF 0.938 0.909 0.929 

F.1.1 ~ K=N/10 0.920 0.926 0.914 

F.1.2 AABS 
Silhouette 

Ranking 
0.920 0.926 0.914 

F.1.3 10x10foldkCV-AABS Majority Votes 0.947 0.938 0.912 

F.1.4 10x10foldkCV-AABS IO+RFIO 0.950 0.962 0.901 

F.1.5 10x10foldkCV-AABS IO 0.963 0.988 0.976 

F.1.6 10x10foldkCV-AABS RFIO 0.942 0.952 0.895 

F.2.1 ~ IO 0.902 0.911 0.877 

F.2.2 10x10foldkCV-AABS IO Cluster-mate 
0.958 to 

0.963 

0.961 to 

0.988 

0.954 to 

0.978 
Definition of abbreviations: AUC-ROC – area-under-receiver-operator characteristics curve; LOOFF – leave-one-

subject-out feed-forward; N – number of subjects; AABS – average adjusted best silhouette; 10x10foldkCV – 10 rounds of 

10-fold cross validation; IO – information optimization 

 

F.2.1. Additional Consideration: Information Optimization Without Feature Set Reduction 

Here, we consider the possibility that the feature set selection method may perform better without 

the feature set reduction set. To test this consideration, the IO method was run on the full un-reduced 

feature set and selected 36 features to build an ANN. This method showed a decrease in performance 

(AUC-ROC = 0.902), implying the benefit of feature set reduction of highly correlated features prior to 

feature set selection. This investigation has reinforced both the need for a sufficient reduction method and 

the need for feature selection beyond a first-cut reduction approach for classifier development. 

F.2.2. Additional Consideration: Medoid Verses Cluster-mate Performance 

As k-medoids selects a single representative feature for a cluster, there is the potential that performance of 

a classifier could be altered by the selection of specific representative features. The seminal case where 

this may be most altering would be in clusters with only two features. Currently, the method used for 

determining which feature is the medoid in clusters-of-two is the feature that is most dissimilar to the 

nearest cluster. On the final model of pipeline development, we did a test of substituting (one-at-a-time) 

in the cluster-mates for the clusters which contained only two features. This did not result in any 

significant difference in classification performance (p > 0.05) using Delong comparison of AUC-ROC 

curves. Raw prediction scores deviated by <0.001 to 0.042.  

F.3. Set Size Maximum 

In traditional machine learning algorithms using curated features, there is an art to deciding the 

number of features to use to develop the tool. This number needs to be large enough to capture the 

complexity of the problem’s solution and the variability of the features between subjects with the same 

end classification. However, if the number is too large it can lead to more opportunities for overtraining 
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of the classifier, increased development time, and model complexity. The Peduzzi limitation for the 

number of features related to cases is one for every ten additional cases; this is a conservative method for 

restricting overfitting in the resultant model that has been adopted by many158. However, recently 

Vittinghoff et al. determined that decreasing ratio between the predictor and the number of unique cases 

to 1:5 did not lead to significant overtraining98. For the results presented in Chapter 5: QIC-RATE of 

this dissertation, the N/10 rule was relaxed to include up to N/5 features.  
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APPENDIX G: CLASSIFICATION 

The final step in building the classification pipeline is choosing the type of classifier. There is a 

plethora of classification methods that have been developed161. Here, we selected classifiers from three 

distinct machine learning techniques: neural network, non-probabilistic linear discriminant, and decision 

tree. By selecting these different approaches, we can better assess a broader scope than if we selected 

three different subtypes of a method (i.e.: decision trees, random forest, conditional inference forests). 

Once an overall classification type is determined, tuning of the exact algorithm and parameters can take 

place. 

G.1. Classification Methodology 

G.1.1. Artificial Neural Network 

An ANN is a classification method that consists of a collection of connected nodes linked together by 

weighted edges which loosely model the neurons in a brain. The training algorithm can be divided into 

two phases: propagation and weight update. The Prior Approach utilized an in-house ANN development 

script written in MatLab (Mathworks, Natick, MA)11. To summarize, this method was built using tanh 

sigmoid activation function. The default hyperparameters were as follows, single hidden layer, fully-

connected, the hidden layer size = 2 nodes, alpha (activation) = 1.716, beta = 0.6667, eeta = 0.03. The 

script originally used non-seeded random initialization of weights; as such, each time the script is run the 

original weights are randomly initialized in a unique manner.  

G.1.2. Support Vector Machine  

From the category of non-probabilistic linear discriminants, an ensemble of 30 support vector machines 

(SVM-E) was built using gating of 8 experts. This method was run in R using the ‘classyfire’ package; 

the function ‘cfBuild’ was implemented with defaults . 

G.1.3. Conditional Inference Forest 

A forest ensemble of 30 conditional inference random trees (CIRF) testing 5 features at each node was 

implemented. This method was run in R using ‘party’ package; the function ‘cforest’ was implemented 

with defaults.  

G.2. Selecting the Classifier 

Based on 10-kCV results, tuning of exact algorithm and hyper-parameters was systematically 

performed. Of the three classification methods, SVM-E took the longest to run through 10-kCV taking 

approximately 5.25 hours, ENN run time was approximately 20.5 minutes, and CIRF had the shortest run 

time at approximately 4.75 minutes, when applied to the cohort. Results of the 10-kCV are shown in 
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Table G.1 below. The ANN classifier performed best in terms of accuracy, sensitivity, and AUC. It also 

had the highest specificity of the three, although SVM-E performed within the same standard deviation of 

100 trials. The Youden threshold for the ANN classifier was a prediction output of 0.241. All cases with 

an ANN prediction value below were assigned benign classification and all cases equal to or greater than 

the cutoff was assigned malignant classification.  

Table G.1: Performance results from testing the three classification methods on 363 subjects. Subject-level predictions 

and AUC-ROC were calculated from 10-fold cross validation as described in section A.3.2. Sensitivity and specificity were 

calculated from the threshold described in section A.1.3.1. 

Section Classification Method AUC-ROC Sensitivity Specificity 

G.1.1 ANN 0.963 0.988 0.976 

G.1.2 SVM-E 0.864 0.602 0.959 

G.1.3 CIRF 0.761 0.639 0.830 

Definition of abbreviations: AUC-ROC – area-under-receiver-operator characteristics curve; ANN – artificial neural 

network; SVM-E – ensemble of support vector machines; CIRF – conditional inference random forest  

In conclusion, the ANN achieved the best performance with an acceptable computational run time and 

therefore was selected to complete the pipeline. The most computationally dependent is the extraction of 

imaging features from the CT scan taking an average of 12 minutes per case. Once features are extracted 

from the ROI, the QIC-RATE method to build the final tool took an average of 7.2 minutes over ten runs. 

To run a new case through the complete pipeline (image segmentation, selected feature extraction, and 

classification prediction) took an average of 5 minutes for a validation cohort of ten cases.  

G.3. Improvements to the ANN architecture 

The architecture of ANNs in the Prior Approach was limited due to the classifier’s use in LOOFF 

set selection, which necessitated a fast-building ANN framework as development was performed 

thousands of times during selection process. As such, the Prior Approach selected a single hidden layer 

architecture with hidden layer node size of two and hyper-parameters that were fixed. With the newly 

developed classifier development pipeline, feature set selection is independent of classifier development 

improving speed and negating the need for the repetitive classifier development of LOOFF set selection. 

Therefore, several ANN architecture tuning methods were employed to enhance the learning process and 

promote model stability.  

G.3.1. Seeding of weight initialization 

In the ANN architecture, there is the need to have initialized network weights before starting to 

train. Most often, these weights are randomly initialized through random number generators. A drawback 

to using random initialization is there is the potential for loss of repeatability of methods. To circumvent 

this and to ensure repeatability and therefore model development stability over training we have opted to 

used seeded random number generators. In seeding, a seed-point is selected and after the seed-point has 
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been called all sequential randomly generated numbers will be consistent. For example, calling a seed = 

42 using the R seed function - set.sed(42) - followed by the random float number generator function - 

rnom(4) - produces the following sequence of numbers: [1.3709584, -0.5646982, 0.3631284, 0.6328626] 

G.3.2. 10 rounds 10-kCV for each elemental ANN 

Using 10 rounds of 10-kCV for each ANN checks on the influence of randomization in weight 

initialization (see also, G.3.1). Utilizing 10-kCV reduces the computational complexity over the 

traditional LOO while still providing a large proportion of the dataset for the training steps.   

G.3.3. Increased complexity in elemental ANN architectures 

We utilized a Monte Carlo simulation for the random selection hyperparameters, features in 

elemental ANNs. An array of 10,000 elements was generated by applying gaussian nose about the 

original fixed hyper-parameter values for each hyper-parameter. Architecture-specific parameters were 

also randomly selected in elemental ANNs including hidden layer size (2 to number of features), number 

of hidden layers (2 to 4), and the number of features applied. 

G.3.4. Ensemble of Artificial Neural Networks  

Stacked ensemble learners are a group of classifiers which come together to ‘vote’ or provide risk 

assessment as a panel of evaluators162. Ensemble learners built with sub-optimal or weak classifiers have 

been shown to typically outperform single classifiers on independent data as variability is more innately 

built into a group of classifiers. While the number of classifiers in an ensemble is up to the developer, 

often custom ensembles are built with 5 to 25 classifiers163.  

 

 

 


